Тема 3.5. Экологическая эффективность различных способов получения электрической энергии.
Энергетический ресурс – материальный объект, в котором сосредоточена энергия, пригодная для практического использования человеком, носитель энергии. Первичный энергоресурс – энергоресурс, который не подвергался какой-либо переработке непосредственно находящиеся в природе (солнечная энергия, ветер, месторождения нефти и газа и т.д.). Вторичный энергоресурс – энергоресурс, полученный после преобразования первичного энергоресурса на специальных установках, а также полученный в результате недоиспользования энергии в технологическом процессе или в виде побочного продукта основного производства (электроэнергия, горячая вода, газ в трубопроводе). Классификация первичных энергоресурсов: 1. по способу использования: - топливные, - нетопливные 2. по признаку сохранения запасов: - возобновляемые, - невозобновляемые 3. по месту нахождения в литосфере: - ископаемые (в недрах), - неископаемые (на поверхности литосферы) 4. по признакам природопользования: - участвующие в круговороте веществ и превращения энергии (солнечная, космическая), - детонированные (занесенные), (ископаемые), находящиеся в недрах, (уголь, торф), ядерное топливо, - искусственно активированные (вещества, участвующие в химических реакциях). 5. по влиянию на энергию биосферы: - добавляющие энергию, - недобавляющие энергию. 6. по экономической классификации: - валовый ресурс – суммарная энергия энергоресурса, - технический ресурс – энергия, которая может быть получена из энергоресурса при существующем уровне развития техники, - экономический ресурс – энергия, получение которой выгодно при существующем соотношении цен на оборудование, материалы, рабочую силу. Иногда ресурс дешевле купить, чем добыть. Классификация вторичных энергоресурсов (ВЭР): 1. по происхождению: - тепловые – тепло золы, шлаков, газов, воды, пара, твердых тел; - горючие – горючие газы, отходы, используемые как топливо; - избыточного давления – газ, вода, пар, находящиеся под давлением или обладающие кинетической энергией. 2. по направлению использования: - топливные (используются как топливо) - тепловые (используются как источник тепла или как теплоноситель) - силовые (используются в виде механической или электрической энергии) - комбинированные (используются как механическая энергия и тепло). 3. по степени концентрации энергии: - высокопотенциальные (высокотемпературные, Т=400÷1000 С), - среднепотенциальные (газы, вода, пар, отходы производства с температурой выше 120 С), - низкопотенциальные (выбросы воздуха из вентиляции, бытовые стоки, вода из систем отопления). Гидроэнергетика. В большинстве промышленно развитых стран незадействованным на сегодня остался лишь незначительный по объёму гидроэнергетический потенциал. Гидроэнергетические сооружения в потенциале несут в себе опасность крупных катастроф. Так, в 1979 году авария на плотине в Морви (Индия) унесла около 15 тысяч жизней. В Европе в 1963 году авария плотины в Вайонт (Италия) привела к гибели 3 тысячи человек. Неблагоприятное воздействие гидроэнергетики на окружающую среду, в основном, сводится к следующем, затопление с/х угодий и населённых пунктов, нарушение водного баланса, что ведёт к изменению существования флоры и фауны, климатические последствия (изменение теплового баланса, увеличение количества осадков, скорости ветра, облачности и т.д.). Перегораживание русла реки приводит к заливанию водоёма и эрозии берегов, ухудшению самоочищения проточных вод и уменьшению содержания кислорода, затруднения свободное движение рыб. Энергия ветра. Энергия ветра в больших масштабах оказалась ненадёжной, неэкономичной и, главное, неспособной давать электроэнергию в нужных количествах. Строительство ветряных установок усложняется необходимостью изготовления лопастей турбины больших размеров. Так, по проекту ФРГ установка мощностью 2-3 МВт должна иметь диаметр ветрового колеса 100м, причём она производит такой шум, что возникает необходимость отключения её в ночное время. В штате Огайо была построена крупнейшая в мире ветросиловая установка 10МВт. Проработав несколько суток, была продана на слом по цене 10дол. За тонну. В радиусе нескольких километров жить стало невозможно из-за инфразвука, совпадающего с альфа-ритмом головного мозга, что вызывает психические заболевания. К серьёзным негативным последствиям использование энергии ветра можно отнести помехи для воздушного сообщения и для распространения радио-и телеволн, нарушения путей миграции птиц, климатические изменения вследствие нарушения естественной циркуляции воздушных потоков. Солнечная энергия. Солнечная энергия. Техническое использование солнечной энергии осуществляется в нескольких формах: применение низко – и высокотемпературного оборудования, прямое преобразование солнечной энергии в электрическую на фотоэлектрическом оборудовании. Принципиальными особенностями солнечного излучения являются огромные потенциальные ресурсы (в 4000 раз превышает прогнозируемые энергопотребности человечества в 2020 году) и низкая интенсивность. Одним из наиболее важных препятствий является низкая интенсивность солнечного излучения, что проблему необходимости концентрирования солнечной энергии в сотни раз ещё до того, как она превратится в тепло. Практическая реализация концентрации солнечной энергии требует отчуждения огромных земельных площадей. Геотермальная энергия Отрицательными экологическими последствиями использования геотермальной энергии подземных источников горячей воды является возможность пробуждения сейсмической активности в районе электростанции, опасность локального оседания грунтов, эмиссия отравляющих газов (пары ртути, сероводорода, аммиака, двуокиси и окиси углерода, метана), которые представляют опасность для человека, животных и растений. ИТОГ: Ресурсы таких источников, как гидроэнергетика, энергия ветра, морских волн и приливов, недостаточны. Солнечная энергетика и энергия геотермальная с теоретически неограниченными ресурсами характеризуются чрезвычайно низкой интенсивностью поступающей энергии. С использованием новых видов энергии возникает и новый тип экологических последствий, которые могут привести к изменению природных условий в глобальных масштабах и которые пока в полной мере трудно представить. Тепловые электростанции. Тепловые электрические станции (ТЭС), тепловые электрические централи (ТЭЦ). Комбинированное производство тепла и электрической энергии снижает объемы выбросов SO2, NOx, CO2 в атмосферу (SO2 со 100% до 5%, NOx со 100 до 90%, CO2 со 100 до 50%). Осуществляется сброс теплой воды в водоемы, тепла в атмосферу, линии электропередач загрязняют биосферу электромагнитным излучением. При сгорании топлива выбрасывается пыль, содержащая тяжелые металлы. Добыча топлива, его доставка, хранение, аварии при транспортировке и хранении приводят к значительному экологическому ущербу. Тепловая энергетика оказывает огромное влияние на окружающую среду, загрязняет воду и атмосферный воздух. Самая грязная и экологически опасная – угольная электростанция. При мощности в 1 млрд. Вт она ежегодно выбрасывает в атмосферу 36,5 млрд. куб. метров горячих газов, содержащих пыль, вредные вещества и 100 млн. куб. метров пара. В отходы идут 50 млн. куб. метров сточных вод, в которых содержится 82 тонны серной кислоты, 26 тонн хлоридов, 41 тонна фосфатов и 500 тонн твёрдой извести. Ко всем этим выбросам необходимо добавить углекислый газ – результат сгорания угля. Наконец, остаётся 360 тысяч тонн золы, которую приходится складировать. Приливные электростанции. Для устройства простейшей приливной электростанции (ПЭС) нужен бассейн – перекрытый плотиной залив или устье реки. В плотине имеются водопропускные отверстия и установлены турбины. Несмотря на высокую стоимость строительства, которая почти в 2,5 раза превосходит расходы на возведение ГЭС такой же мощности, первый опыт эксплуатации приливной электростанции оказался экономически оправданным. С точки зрения экологии ПЭС имеют бесспорное преимущество перед тепловыми электростанциями, сжигающими нефть и каменный уголь. Солнечные космические электростанции. Получать и использовать «чистую» солнечную энергию на поверхности Земли мешает атмосфера, поэтому появляются проекты размещения солнечных электростанций в космосе, на околоземной орбите. У таких станций есть несколько достоинств: невесомость позволяет создать многокилометровые конструкции, которые необходимы для получения энергии; преобразование одного вида энергии в другой неизбежно сопровождается выделением тепла, и сброс его в космос позволит предотвратить опасное перегревание земной атмосферы.
Занятие №12
|