Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Глава 20. Пророчества, сбывающиеся сами собой





Представьте, что на каждой из карточек, изображенных на рис. 20.1, с одной стороны изображена цифра, с другой — буква. Вам говорят: «если с одной стороны карточки — гласная, то с другой стороны — четное число». Какие карточки вам надо перевернуть, чтобы убедиться в истинности этого утверждения? (см. п. 39 Анкеты).

Когда Питер Уэйсон и Фил Джонсон- Лайрд в 1972 году задавали вопросы такого типа* 128 студентам университета, они обнаружили, что «Е и 4» — наиболее распространенный ответ (его (286:) дали 59 субъектов), а «Е» — второй наиболее распространенный (42 субъекта). Другими словами, большинство студентов выбрали карточки, изображения на которых были названы в вопросе. Только пять студентов дали верный ответ: «Е и 7».

Рисунок 20.1

* В некоторых версиях этого вопроса использовались другие символы, но логика и структура проблемы оставались прежними. (286:)

Если этот ответ вам кажется удивительным, подумайте над проблемой следующим образом. Утверждение звучало так: «Если гласная — то число четное» или более обобщенно «Если X, то Y». Единственный способ доказать, что это не так, — найти случай, где «X и не Y» (т.е. гласная и нечетное число). Итак, две карточки, которые могут удовлетворять этому последнему условию, — это карточка с гласной «Е» и карточка с нечетным числом «7». Карточки с гласной и четным числом не имеют никакого отношения к проблеме.

Хотя объяснение кажется простым, проблема вызывает затруднения у большинства людей. Робин Доус в 1975 году нашел, что четверо из пяти хорошо знающих математику психологов не могли решить эту задачу. Возникает вопрос, почему такие проблемы трудны и какое значение это имеет для принятия решений.







Дата добавления: 2015-09-04; просмотров: 328. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия