Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Последовательный (линейный) поиск





Последовательный (линейный) поиск – это простейший вид поиска заданного элемента на некотором множестве, осуществляемый путем последовательного сравнения очередного рассматриваемого значения с искомым до тех пор, пока эти значения не совпадут.

Идея этого метода заключается в следующем. Множество элементов просматривается последовательно в некотором порядке, гарантирующем, что будут просмотрены все элементы множества (например, слева направо). Если в ходе просмотра множества будет найден искомый элемент, просмотр прекращается с положительным результатом; если же будет просмотрено все множество, а элемент не будет найден, алгоритм должен выдать отрицательный результат.

Алгоритм последовательного поиска

Шаг 1. Полагаем, что значение переменной цикла i=0.

Шаг 2. Если значение элемента массива x[i] равно значению ключа key, то возвращаем значение, равное номеру искомого элемента, и алгоритм завершает работу. В противном случае значение переменной цикла увеличивается на единицу i=i+1.

Шаг 3. Если i<k, где k – число элементов массива x, то выполняется Шаг 2, в противном случае – работа алгоритма завершена и возвращается значение равное -1.

При наличии в массиве нескольких элементов со значением key данный алгоритм находит только первый из них (с наименьшим индексом).

int LinearSearch(int *x, int k, int key){ int i = 0; for (i = 0; i < k; i++) if (x[i] == key) break; return i < k? i: -1;}

Время выполнения данного алгоритма поиска для вещественных чисел , где n – количество элементов множества, а – точность. Поиск на дискретном множестве из n элементов осуществляется в худшем случае за n итераций, а в среднем этот алгоритм требует n/2 итераций цикла. Следовательно, временная сложность последовательного поиска пропорциональна O(n). Никаких ограничений на порядок элементов в массиве данный алгоритм не накладывает.

Недостатком рассматриваемого алгоритма поиска является то, что в худшем случае осуществляется просмотр всего массива. Поэтому данный алгоритм используется, если множество содержит небольшое количество элементов.

Достоинства последовательного поиска заключаются в том, что он прост в реализации, не требует сортировки значений множества, дополнительной памяти и дополнительного анализа функций. Следовательно, может работать в потоковом режиме при непосредственном получении данных из любого источника.

Существует модификация алгоритма последовательного поиска, которая ускоряет поиск. Эта модификация является небольшим усовершенствованием рассмотренного алгоритма поиска.

Идея поиска с барьером состоит в том, чтобы не проверять каждый раз в цикле условие, связанное с границами множества. Это можно обеспечить, установив в данном множестве так называемый барьер. Под барьером понимается любой элемент, который удовлетворяет условию поиска. Тем самым будет ограничено изменение индекса.

Выход из цикла, в котором теперь остается только условие поиска, может произойти либо на найденном элементе, либо на барьере. Существует два способа установки барьера: дополнительным элементом или вместо крайнего элемента массива.

//описание функции последовательного поиска с барьеромint LinearSearchWithBarrier(int *x, int k, int key){ x = (int *)realloc(x,(k+1)*sizeof(int)); x[k] = key; int i = 0; while (x[i]!= key) i++; return i < k? i: -1;}

Заметим, что поиск с барьером работает быстрее, но временная сложность алгоритма остается такой же O(n), где n – количество элементов множества. Гораздо больший интерес представляют методы, не только работающие быстро, но и реализующие алгоритмы с меньшей сложностью.







Дата добавления: 2015-09-04; просмотров: 668. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия