Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Стабилизаторы постоянного напряжения (СПН)





СПН обеспечивают стабильный уровень выходного напряжения источника питания при действии двух дестабилизирующих факторов - нестабильности входного напряжения и изменениях выходного (нагрузочного) тока.

СПН является принципиально нелинейным устройством, связь между выходным напряжением U2, входным U1 и выходным током I2 может быть представлена некоторой функциональной зависимостью

U2=F(U1, I2).

Линеаризуя это уравнение относительно некоторого номинального режима

U20, U10, I20,

получим уравнение для приращений

,

где - коэффициент стабилизации;

(7.1)

- выходное сопротивление.

Соотношения (7.1) являются основными для определения качества стабилизатора. Из (7.1) следует, что для идеального стабилизатора необходимо иметь

k®¥, r22®0.

Различают два типа стабилизатора - параметрические и компенсационные. В параметрических СПН используются стабилизирующие свойства стабилизатора, в которых при изменении тока в режиме электрического пробоя в широких пределах напряжение остается практически неизменным.

Рис. 7.8. Расчетная схема для определения параметров параметрического стабилизатора
Рис. 7.7. Схема параметрического СПН

Схема параметрического (пассивного) СПН приведена на рис. 7.7. Изменение входного напряжения (DU1) или тока нагрузки (DI2) в этой схеме приводит лишь к изменению тока через стабилитрон (DIст), а напряжение на нем, которое и равняется выходному напряжению, меняется незначительно.

Используя линеаризованные расчетные темы с учетом соотношений (7.1) - рис. 7.8, можно получить значения параметров

(7.2)

Требуемый коэффициент стабилизации согласно (7.2) можно обеспечивать за счет увеличения балластного резистора R0, хотя это приведет к снижению КПД стабилизатора.

Поэтому в качестве балластного элемента чаще всего используются нелинейные элементы с большим дифференциальным сопротивлением. Наиболее просто такая схема реализуется на полевом транзисторе (рис. 7.9).

Рис. 7.9. Схема параметрического СПН с нелинейным балластным элементом

В силу особенности сквозной ВАХ полевого транзистора с управляемым р-п-переходом напряжение на стабилитроне одновременно является напряжением смещения транзистора, задающего номинальный ток через стабилитрон Iс0. Большое сопротивление для приращений участка сток-исток обеспечивает высокий коэффициент стабилизации в такой схеме. Выходное же сопротивление остается по-прежнему равным дифференциальному сопротивлению стабилитрона, которое у лучших образцов составляет единицы-десятки Ом, что в большинстве случаев является неприемлемым.

Поэтому параметрический СПН целесообразно использовать в системах, где ток нагрузки практически не меняется.

  Рис. 7.10. Обобщенная схема СПН компенсационного типа

Близкие к идеальным характеристики можно получить в СПН компенсационного типа на основе усилителей постоянного тока с обратной связью по отклонению выходного напряжения относительно некоторого постоянного (опорного) напряжения вспомогательного источника. Обобщенная структурная схема компенсационного СПН изображена на рис. 7.10. Любые отклонения выходного напряжения от номинального значения выделяются путем сравнения опорного напряжения U0 и части выходного Uос, усиливаются и так воздействуют на регулирующий транзистор VT, чтобы свести отклонение к минимуму. Таким образом, в процессе работы меняется только напряжение коллектор-эмиттер регулятора.

Рассматривая схему данного СПН как усилитель с глубокой обратной связью (VT - как выходной каскад усиления мощности), на вход которого подано постоянное напряжение U0, на основе свойств идеального операционного усилителя, запишем

(7.3)

Если U0=const, отношение R2/R1= const, то из (7.3) следует, что

U2=const

при действии любых дестабилизирующих факторов. Предельная стабильность выходного напряжения, кроме стабильности U0, и отношения R2/R1 определяется также температурным дрейфом смещения нуля ОУ. Параметры современных прецизионных ОУ позволяют обеспечить практически идеальный СПН.

В качестве опорного источника в принципе можно использовать параметрический стабилизатор с нелинейным балластным резистором. Однако, температурный дрейф, разброс напряжения стабилизации стабилитронов достаточно велик и в микросхемном исполнении чаще всего используются опорные источники, не содержащие стабилитронов. В этих источниках путем выбора соответствующих параметров схемы на его зажимах напряжение равно ширине запрещенной зоны кремния с очень высокой температурной стабильностью. Пример реализации такого источника приведен на рис. 7.11.

Рис. 7.11. Схема интегрального опорного источника без применения стабилитрона

Рассмотренные выше компенсационные СПН, основой которых являются усилители, работающие в непрерывном режиме, называются линейными. Основным их недостатком являются большие потери мощности на регулирующем транзисторе. Для обеспечения высокого значения КПД, как и в усилителе мощности, можно использовать ключевой режим работы регулирующего транзистора. Простейшая схема такого стабилизатора, называемого ключевым, на принципе адаптивной ШИМ изображена на рис. 7.12.

За счет временного запаздывания сигнала обратной связи, вносимого фильтром Lф, Сф - усилитель рассогласования работает в режиме компаратора, вырабатывающего широтномодулированные импульсы управления регулирующим транзистором, который работает в ключевом режиме (выходное напряжение ниже нормы - транзистор открывается, выходное напряжение выше нормы - транзистор полностью запирается). Ключевому стабилизатору принципиально присущ пульсирующий характер выходного напряжения, который сводится к приемлемому уровню за счет высокой чувствительности компаратора.

Рис. 7.12. Ключевой стабилизатор с адаптивной ШИМ






Дата добавления: 2015-09-04; просмотров: 475. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия