Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Общая характеристика учебного предмета. Изучение учебного предмета предполагает получение прочных умений и навыков на примерах, обеспечивающих дальнейшее применение изученного





Изучение учебного предмета предполагает получение прочных умений и навыков на примерах, обеспечивающих дальнейшее применение изученного, каждое умение доводить до навыка, как можно чаще побуждая учащихся к выполнению самостоятельных работ различного характера: математических диктантов, практических, контрольных работ, зачетов. Часть этих работ можно проводить в полуустной форме, когда на одни вопросы учащиеся отвечают письменно, а на другие устно, подняв руку и дождавшись, когда учитель сможет подойти и выслушать ответ. Целесообразно уделять специальное внимание развитию устной речи.

Предусматривается довольно много самостоятельных работ. Разрешается консультироваться с учителем, пользоваться учебником, устно давать ответы на некоторые вопросы.

Контрольные работы выполняются только письменно, а форма зачета может быть разной: одни ученики могут отвечать устно по специальным билетам, а другие выполнять задания в письменном виде.

Для формирования творческой активности учащихся предполагаются уроки коллективных рассуждений, обсуждений, дискуссий, коллективного решения наиболее значимых задач, групповая и парная работа, обучение работать самостоятельно с учебником, справочниками, дополнительной литературой, творческие задания. Разработаны индивидуальные карточки учета и коррекции знаний по основным темам. Домашние задания предполагаются не только для закрепления изученного материала, но и для самостоятельной исследовательской деятельности. Для этого разработаны индивидуальные карточки задания.

При изучении математики основное внимание уделяется формированию широкого круга практических навыков вычислений (прочные навыки выполнения действий над сравнительно небольшими числами, приемы прикидки и оценки результатов действий, проверка результата на правдоподобие и др.), а также обучению решению несложных, но достаточно разнообразных по ситуациям текстовых задач, а также систематическое решение несложных нестандартных задач.

Решение задач такого рода является обязательным элементом обучения, так как при этом учащиеся овладевают разнообразными приемами мыслительной деятельности. Степень самостоятельности учеников при решении указанных задач не так уж важна (для многих это может оказаться непосильным). Главное здесь – сознание каждым учеником приема решения, с помощью которого получен ответ. В каждой теме выделяется главное, и исходя из этого четко дифференцирован материал: вычленены те задачи, которые должны отрабатываться и выполняться многократно, и те, которые служат другим целям (развитие, пробуждение интереса и др.) и в соответствии с этим не должны дублироваться. Такое различие делается явным и для учащихся.

Большое внимание уделяется накоплению учащимися опыта геометрической деятельности, развитию их пространственных представлений, глазомера, наблюдательности. Геометрические понятия возникают в естественном контексте из практической деятельности и ассоциируются со зрительным образом. Их рассмотрение не предполагает формализации, однако способствует накоплению достаточно большого объема геометрических знаний и развитию геометрического мышления. Значительное место занимают упражнения, в которых требуется начертить, перерисовать, измерить, найти на рисунке или предмете, вырезать, разрезать, составить фигуру и др.

Отработка основных умений и навыков осуществляется на большом числе несложных, доступных учащимся упражнений. В то же время это не означает монотонной и скучной деятельности, так как курс наполняется заданиями, разнообразными по форме и содержанию, позволяющими применять получаемые знания в большом многообразии ситуаций. Необходимо отрабатывать прочные вычислительные навыки.

Начинается изучение новой содержательной линии «Элементы логики, комбинаторики, статистики и теории вероятностей». Предлагается естественный и доступный детям этого возраста метод решения комбинаторных задач, заключающийся в непосредственном переборе возможных вариантов (комбинаций). Он носит общий характер и применим в тех случаях, когда число вариантов невелико.








Дата добавления: 2015-09-04; просмотров: 535. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия