Operator precedence and associativity
When an expression contains multiple operators, the precedence of the operators controls the order in which the individual operators are evaluated. For example, the expression x + y * z is evaluated as x + (y * z) because the * operator has higher precedence than the binary + operator. The precedence of an operator is established by the definition of its associated grammar production. For example, an additive-expression consists of a sequence of multiplicative-expressions separated by + or - operators, thus giving the + and - operators lower precedence than the *, /, and % operators. The following table summarizes all operators in order of precedence from highest to lowest:
When an operand occurs between two operators with the same precedence, the associativity of the operators controls the order in which the operations are performed: · Except for the assignment operators and the null coalescing operator, all binary operators are left-associative, meaning that operations are performed from left to right. For example, x + y + z is evaluated as (x + y) + z. · The assignment operators, the null coalescing operator and the conditional operator (?:) are right-associative, meaning that operations are performed from right to left. For example, x = y = z is evaluated as x = (y = z). Precedence and associativity can be controlled using parentheses. For example, x + y * z first multiplies y by z and then adds the result to x, but (x + y) * z first adds x and y and then multiplies the result by z.
|