Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Троичный сумматор





Так как возможно несколько видов физической реализации троичных систем: трёхуровневая однопроводная, двухуровневая двухразрядная двухпроводная, двухуровневая трёхразрядная одноединичная трёхпроводная, двухуровневая трёхразрядная однонулевая и др., то возможны и несколько видов троичных сумматоров.

Кроме этого, сумматоры в несимметричной троичной системе счисления отличаются логикой работы от сумматоров в симметричной троичной системе счисления.

Троичный одноразрядный полный сумматор в троичной несимметричной системе счисления является неполной тринарной (трёхоперандной) троичной логической функцией. Два операнда — два слагаемых — полные, третий операнд — троичный разряд переноса — неполный и имеет только два значения 0 и 1 из трёх.

Троичный одноразрядный полный сумматор в трёхбитной одноединичной системе троичных логических элементов, работающий в троичной несимметричной системе счисления, приведённый на рисунке справа описан в [7][ неавторитетный источник? ].

Троичный полный тринарный одноразрядный сумматор, работающий в троичной симметричной системе счисления Фибоначчи, является полной тринарной троичной логической функцией с двухразрядным результатом[8][ неавторитетный источник? ].

Троичный одноразрядный тринарный (трёхоперандный, полный) сумматор работающий в троичной симметричной системе счисления Фибоначчи в трёхбитной одноединичной системе троичных логических элементов с логическими элементами ИЛИ описан в [9].

Троичный одноразрядный тринарный (трёхоперандный, полный) сумматор работающий в троичной симметричной системе счисления Фибоначчи в двухбитной системе троичных логических элементов с логическими элементами ИЛИ описан в [10]

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ №___ 3 ___

 







Дата добавления: 2015-09-07; просмотров: 717. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия