Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ГЛАВА 1. НАПРАВЛЕНИЕ ИСПОЛЬЗОВАНИЯ АСУ ПРЕДПРИЯТИЕМ. КЛАССИФИКАЦИЯ АСУ





Сформировались четыре поколения АСУ. Для первого поколения характерной чертой являлась автоматизация планово-экономических расчётов с ориентацией на традиционные методы управления производством. Отсутствие стандартных периферийных устройств затрудняло внедрение АСУ, заставляло проектировщиков создавать оригинальные, но часто неперспективные устройства. АСУ первого поколения копировали ручные методы управления, имели разомкнутый характер и были ориентированы на конкретный объект.

В АСУ второго поколения автоматизировались комплексы задач. Самостоятельное развитие получили АСУ конкретного назначения: АСУП, АСУ ТП, САПР. Часть функциональных задач решались с оптимизацией. Возник информационно-советующий способ управления производством с решением оперативных задач в диалоговом режиме. В качестве технических средств АСУ стали применяться вычислительные комплексы второго поколения (ЕС ЭВМ, СМ ЭВМ и др.), базирующиеся на диалоговых операционных системах (ОС ЕС, ОС РВ) с использованием функциональных пакетов прикладных программ и систем управления базами данных. Совершенствовалась и технология программирования, стали применяться библиотеки типовых проектных решений, пакеты прикладных программ. Получила развитие система автоматизации проектирования АСУ с использованием алгоритмических языков высокого уровня. Были разработаны общеотраслевые методические материалы по созданию АСУ. При организации технического прогресса получил применение многопрограммный режим работы вычислительной системы с использованием банков данных, реализованных на основе СУБД и накопителей прямого доступа на магнитных дисках. Однако АСУ различных уровней управления имели разобщённый характер, слабо использовались инструментальные средства автоматизации проектирования АСУ, недостаточно развивались АСУ технологического типа.

АСУ 90-х можно отнести к АСУ третьего поколения. По содержанию решаемых задач и структуре построения они являются интегрированными системами, охватывают стадии создания изделий от возникновения идеи до серийного производства, а также уровни управления от организационно-экономического до технологического. При решении функциональных задач широко применяются методы оптимизации, имитационного моделирования, экспертных систем.

При создании АСУ получили распространение программно-технологические комплексы, позволяющие автоматизировать процесс проектирования АСУ и её обеспечивающих подсистем. Разработке АСУ предшествовало совершенствование организационных и технологических основ производства и хозяйственного механизма предприятия. Таким образом, уже в АСУ третьего поколения нашли отражение элементы новой информационной технологии.

АСУ четвёртого поколения – это гибкие, адаптивные интегрированные системы с элементами искусственного интеллекта. Они должны реализовать безбумажное, безлюдное управление объектом с подстройкой к изменяющимся внешним условиям и ресурсам. Эти системы должны обладать значительной долей универсальности и настройкой на класс управляемых объектов. Их реализация возможна на супер-ЭВМ четвёртого поколения, объединённых сетью с мини- и микроЭВМ. В АСУ четвёртого поколения должно происходить накопление знаний. В их структуре должны найти программную реализацию экспертные системы, системы управления банками знаний и инструментальные на основе языков высокого уровня, позволяющие развивать и наращивать возможности АСУ в зависимости от целей их применения и условий использования. Необходимо совершенствовать и технологию создания программно-технических комплексов на основе интеллектуальных систем автоматизированного проектирования. АСУ четвёртого поколения при создании и функционировании должны базироваться на новой информационной технологии.

Новые поколения АСУ немыслимы также без информационной технологии принятия управленческого решения. Поэтому формирование инженера по автоматизированным системам управления прежде всего означает подготовку специалиста широкого профиля, что обусловлено необходимостью его глубоких знаний и большим разнообразием объектов управления: производство с различными особенностями технологического процесса, в том числе с гибкой технологией, интегрированные производственные комплексы, системы управления в социальной сфере. Специалист в области АСУ должен прежде всего знать системный подход, уметь ставить и решать задачи управления с учётом специфики управляемого объекта.

На современном этапе развития промышленности необходимость комплексной автоматизации производственных процессов в рамках создания АСУП обусловлено рядом технико-экономических причин и предпосылок.

Главными причинами разработки и внедрения АСУП являются:

1. Непрерывное возрастание сложности функций и задач управления производственно-хозяйственной деятельностью предприятия за счет установления большого количества взаимосвязей между отдельными сотрудниками, подразделениями предприятия и с поставщиками. При этом рост связей происходит значительно быстрее, чем количество производственных и технико-экономических объектов управления, они увеличиваются пропорционально квадрату этого числа объектов.

2. Резкое увеличение скорости накопления данных, возрастание потоков технологической и производственно-экономической информации, которую необходимо собрать и переработать для принятия решений по оперативному управлению производством.

3. Увеличение темпов номенклатуры и объемов производства, вызывающее необходимость сокращения сроков освоения новой техники и времени на подготовку производства, унификации и типизации элементно-конструктивной базы выпускаемой продукции.

4. Повышение темпов морального старения продуктов в сочетании с требованиями высокой динамичности развития, что вызывает необходимость всемерного сокращения цикла «разработка–производство–внедрение» путем рациональной организации и ускорения освоения новой техники.

5. Усиливающаяся индивидуализация запросов потребителей на товарную продукцию, своевременное удовлетворение которых возможно лишь при высокой гибкости производства, достигаемой за счет автоматизации всех функций управления жизненным циклом выпускаемых изделий.

6. Ужесточение требований к качеству, в первую очередь к надежности выпускаемой продукции, удовлетворить которые можно лишь программно-управляемого оборудования с автоматическим контролем и управлением технологическими процессами на всех фазах жизненного цикла выпускаемых изделий.

7. Неуклонный рост к потребности в наукоемкой продукции, товарный выпуск которой возможен лишь при высоком уровне автоматизации производственных процессов.

8. Основными предпосылками, стимулирующими создание АСУП, являются:

- повышение научно-технического уровня технологических процессов изготовления сложной товарной продукции, основанных на новейших достижениях микро- и оптоэлектроники, нелинейной оптики, лазерной техники, микромеханики и др.;

- совершенствование машинного парка, появление новых высокопроизводительных машин, механизмов и оборудования, включающих станки с ЧПУ, автоматизированные универсальные многоцелевые станки, компьютерные промышленные манипуляторы и роботы, применяемые в гибких производственных системах (ГПС);

- увеличение надежности технологического оборудования за счет использования новых конструкционных материалов, встроенных микропроцессорных устройств контроля и диагностики, обеспечивающих осуществление упреждающих профилактических ремонтов и бесперебойную работу машинного парка в течение всего срока старения;

- широкое распространение развитых персональных ЭВМ (ПЭВМ), которыми можно оснастить практически все рабочие места и реализовать дружественный к человеку интеллектуальный интерфейс в системе управления или локальной вычислительной сети со стандартными архитектурами и протоколами;

- появление интеллектуальных программируемых контроллеров с относительно невысоким отношением стоимость/функция, сравнительно недорогих суперкомпьютеров, позволяющих создавать экономически целесообразные системы и рабочие станции для управления, обладающих малыми габаритами и высокой надежностью;

Комплексная автоматизация производственных процессов и сопровождающих их управленческих функций приобретает исключительно важную роль в постоянно усложняющихся условиях функционирования промышленного предприятия, ограниченности трудовых, материальных, энергетических ресурсов и острой необходимости всей экономии.

Основной проблемой создания АСУ является получение высокой эффективности от разрабатываемой системы. Необходимо уделять особое внимание совершенствованию организационной структуры управления предприятием, рациональному использованию вычислительных ресурсов, увеличению доли решаемых оптимизационных задач, интегральной автоматизации производства на всех уровнях управления, унификации и типизации проектных решений, автоматизации проектирования АСУ.

Одновременно с широким развитием АСУ возник острый недостаток кадров в этой области. Для разработки АСУ необходимо хорошо знать экономико-математические методы управления, отлично представлять организацию производства, знать основы теории автоматизированного управления производством, информатику, уметь проектировать системы на базе современных средств автоматизации проектирования. Нужно было обратить особое внимание на интегрированность системы, на автоматизацию всех функций системы от технологического процесса до организационного управления и в дальнейшем развивать автоматизированные системы управления технологическими процессами (АСУ ТП). Первые АСУ ТП были введены в период с 1966 по 70-е годы. Наибольшее количество таких систем было внедрено в химической и нефтехимической промышленности, в чёрной и цветной металлургии, в энергетике, что показало высокую их эффективность. Срок окупаемости в среднем составил 1–2 года. Созданные АСУ ТП по своему характеру были автоматизированными системами: в них значительная роль отводилась оператору, который по информации, предоставленной ЭВМ, принимал решения сам или реализовал решения, подсказанные ЭВМ.

Наряду с созданием АСУ ТП предусматривалось серийное производство роботов для автоматизации и механизации процессов механообработки, литья, сварки, сборки, окраски, гальванопокрытий, прессовых и погрузочно-разгрузочных работ. Внедрение робототехнических систем позволяло освободить от тяжёлых работ около 250 тысяч человек.

Повсеместное внедрение АСУ ТП в комплекте с промышленными робототехническими системами позволяет в ближайшее время перейти к цехам- и предприятиям-автоматам, которые будут обладать наивысшей производительностью и экономической эффективностью. Создание интегрированных автоматизированных систем управления, сочетающих в себе элементы АСУ ТП, АСУП, автоматических систем, является исключительно сложной задачей. Эта стыковка прежде всего оказывается возможной на информационном уровне, так как решение, принимаемое руководителем с помощью АСУП, выдаётся в форме документа, а решение, выработанное в АСУ ТП, поступает в виде электрического сигнала на исполнительный механизм. Внедрение АСУ ТП позволяет автоматизировать управление наиболее крупными технологическими комплексами, создать системы программного и оптимального управления, а внедрение АСУП – оптимизировать процессы планирования производства, выработки оперативных управляющих воздействий. Разница между системами прежде всего в горизонтах планирования, в частоте выдачи управляющих сигналов. Автоматизацию управления производством нельзя отрывать от автоматизации самого производства. Этим и вызывается необходимость проведения совместных работ по автоматизированному и автоматическому управлению на всех уровнях народного хозяйства.

АСУП применяется для управления предприятием как автономно, так и в составе АСУ производственным объединением. В обоих случаях область применения АСУП включает в себя:

технико-экономическое планирование и оперативное управление производством, его подготовкой, материально-техническим обеспечением, сбытом и т.д.;

организационно-экономическое управление регламентом движения всей совокупности материальных и информационных потоков в условиях гибкого производства;

координацию и управление технологическими процессами, в том числе автоматизированное технологическое оборудование, встраиваемое в ГПС.

Главной целью АСУП является совершенствование и повышение эффективности производственно-хозяйственной деятельности предприятия, увеличение темпов роста его основных технико-экономических показателей за счет повышения качества решения задач управления, улучшения использования производственных, трудовых и материальных ресурсов, гибкости, ритмичности производства и снижения его издержек. Все это приводит к улучшению качества планирования и оперативного управления и, как следствие, к увеличению номенклатуры и объемов выпуска более качественной товарной продукции.

Сформулированная целевая ситуация АСУП достигается решением технико-экономических и организационно-производственных задач, основными из которых являются:

1. Обеспечение ритмичного выполнения плановых заданий, достижение высоких технико-экономических показателей научно-технического уровня (НТУ) работы предприятия, в первую очередь повышение производительности труда и качества продукции, обеспечение ее конкурентоспособности в условиях рынка.

2. Повышение уровня организации производства и управления, осуществление и рационализация всех видов заводского планирования и оперативного правления, функционирование отдельных производственных и обслуживающих подразделений и всего предприятия в целом.

3. Оптимизация процессов обработки технико-экономических данных, выполнение расчетных и учетно-информационных работ функционально-организационными структурными подразделениями предприятия.

4. Совершенствование производственно-технической базы предприятия в соответствии с новейшими достижениями науки, технологии и организации производства, поддержание допустимых мощностей, увеличение коэффициента загрузки оборудования и обеспечения ликвидации его простоев, гибкости переналадки режимов работ машинного парка.

5. Повышение интенсивности и сбалансированности использования всех видов ресурсов (трудовых, материальных, финансовых, основных производственных фондов), улучшение и поддержание их качественного уровня, снижение их удельных расходов на единицу продукции, сокращение объема незавершенного производства.

6. Разрешение социальных проблем, в части постоянно нарастающего дефицита рабочей силы, повышение гуманизации – интеллектуальности содержания труда, освобождение человека от рутинных монотонных операций.

7. Повышение степени удовлетворенности трудом, материальными и духовными потребностями членов коллектива ИВЦ, улучшение условий труда, быта и отдыха, повышение социальной активности каждого работающего.

8. Выполнение предприятием норм и требований к воздействию процессов производства и выпускаемой продукции на окружающую среду, рациональное использование природных ресурсов, их восстановление и воспроизводство.

Для оценки достижения поставленной целя и решения сформулированных задач при создании АСУП необходимо выбрать или разработать критерий, под которым понимается основной признак системы, позволяющий количественно оценить качество ее работы, эффективность выполнения функций. Критерий должен вытекать из глобальной целевой функции (доктрины) АСУП. При решении задач оптимизации производственных процессов наибольшеераспространение получили экономические и технико-экономические функции.

Совокупность показателей должна обеспечить: единство, комплексность, взаимосвязь, взаимообусловленность и соизмеримость отдельных показателей; достоверность, точность и полноту учета локальных показателей; динамичность возможность выявления и оценки влияния различных факторов на объект управления (ОУ).

В соответствие с целью и задачами, поставленным перед АСУП, в рамках принятого критерия, техническими, экономическими и технико-экономическими показателями могут быть:

- максимизация уровня рентабельности и суммарной прибыли предприятия, загрузки оборудования, ритмичности его работы, технической вооруженности труда; объема и номенклатуры, качества и конкурентоспособности выпускаемой продукции; использования производственных и материальных ресурсов; совершенствования производственных процессов, труда управленческого и обслуживающего персонала; оперативности получения информации и принятия решений; устойчивости и надежности функционирования предприятия.

- минимизация внутрисменных простоев оборудования и длительности производственного цикла выпуска товарной продукции; срока окупаемости единовременных вложений на создание АСУП и себестоимости изготовляемых изделий; времени принятия управленческих решений и разброса договорного срока поставки продукции.

Автоматизированная система управления представляет собой совокупность коллектива людей и комплекса технических средств, то есть является человеко-машинной системой, которая базируется на экономико-математических методах управления, использовании средств электронной вычислительной техники и совместно с математическим, программным, информационным и техническим обеспечением реализует заданную функцию управления.

В основе построения АСУ лежит организационная схема управления заданным объектом. Организационная структура самого предприятия является основой для создания организационной структуры АСУ, однако при переходе к автоматизированной системе управления требуется совершенствование организационной структуры объекта и должна проводиться работа по упорядочению процесса управления до автоматизации.

Исторически в автоматизированных системах управления выделялись наиболее характерные функциональные части системы, которые получили название функциональных подсистем. Они часто разрабатывались последовательно во времени, что приводило к дублированию используемой информации в информационной базе, к усложнению алгоритмов обработки информации и увеличивало требуемый вычислительный ресурс. Функциональный подход к рассмотрению системы позволяет провести анализ выполняемых функций, наметить пути развития системы и её дальнейшего совершенствования.

Таким образом, организационный, функциональный и технический аспекты структуры АСУ являются взаимно независимыми, однако в реально созданной системе они тесно взаимосвязаны и составляют единое целое.

В основе технологического процесса лежит перемещение предметов труда от одной стадии обработки к другой, и это может быть отображено в виде материального потока в производственном пространстве. В соответствии с характером материального потока технологические процессы могут быть разделены на непрерывные и дискретные. В непрерывных технологических процессах как материальный поток, так и отражающая его информация являются непрерывными по своему характеру. Для дискретных технологических процессов характерным является дискретность выходной продукции. К производству дискретного типа можно отнести предприятия приборостроительной, машиностроительной промышленности. В реальных условиях может иметь место производство непрерывно-дискретного типа,сочетающее в себе особенности непрерывного и дискретного производства. Обычно дискретному производству соответствуют мелкосерийное и единичное производства.

Независимо от типа производства любая автоматизированная система состоит из двух основных частей: управляющей части и объекта управления.

Для классификации автоматизированных систем управления необходимо выбрать ряд классификационных признаков: уровень управления, характер объектов управления, характер решаемых задач, структура, выполняемые функции, степень использования выходных результатов, характер производства.

Интегрированные системы включают в себя АСУ организационно-экономического типа и АСУ технологическими процессами. Интегрированная система может интегрироваться как по вертикали, так и по горизонтали. Её отличительной особенностью является единый подход к процессу управления, причём в качестве управляемого объекта выступают аппараты, машины, технологические процессы, а также коллективы людей в экономических и социальных системах. Интегрированные системы управления дают наибольший экономический эффект и являются исключительно перспективными, однако требуют серьёзного изучения информационного, математического, программного и технического обеспечения. По характеру производства выделяют интегрированные АСУ с непрерывным, дискретным и непрерывно-дискретным типом производства.

Для правильного построения системы необходимы чёткая взаимосвязь целей системы с критериями её функционирования, рациональное формирование структуры управления на каждом уровне, определение нормального уровня автоматизации функций управления, установление минимума влияния внешней среды на качество функционирования системы, то есть обеспечение устойчивости системы в целом. Трудность построения АСУ в том, что она является разомкнутой системой и в ней могут быть слабо использованы разработанные в теории управления методы синтеза сложных систем. Наличие человеческого фактора в АСУ ещё более усложняет проблему создания этих систем. Формализация человека как элемента системы является одной из важных составляющих задачи синтеза АСУ и занимает самостоятельное место в этой проблеме.







Дата добавления: 2015-10-01; просмотров: 657. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия