Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

О работе Г. И. Шипова





 

Дальнейшее развитие проблемы “пространство-материя”, предложенное талантливым российским ученым (в настоящее время академиком РАЕН) Г. И, Шиповым, пошло по пути объединения программ Римана—Клиффорда—Эйнштейна и Гейзенберга—Иваненко,

Разобравшись досконально в существующих идеях и разработках, Г. Шипов обратил внимание на то, что в' рассматриваемых уравнениях отсутствуют компоненты вращательного движения, которое сопровождает все в природе — от элементарных частиц до Вселенной. Как выяснилось, фундаментальную роль в таком движении играют поля кручения пространства — торсионные поля, определяющие структуру материи любой природы (111, с. 3). Результатом кручения пространства в физическом проявлении оказалось поле инерции, знания о котором в современной физике практически отсутствуют (26,ч. 1,с.9).

Проблема сил и полей инерции в классической механике и других разделах физики до сих пор является одной из жгучих проблем современной науки. Силы инерции не удовлетворяют третьему закону Ньютона, они являются одновременно и внешними, и внутренними по отношению к изолированной системе; происхождение этих сил всегда было наиболее темным вопросом в теории частиц и полей (26, ч. 1, с. 4). Эта проблема для физики оказалась столь сложной, что знания о силах инерции почти не изменились со времен Ньютона.

В нашей стране периодически возникали общесоюзные дискуссии по проблемам сил инерции. Основными вопросами всегда были: реальны ли силы инерции? Что является их источником? Являются ли они внешними или внутренними по отношению к изолированной системе? Однако единого мнения по этим вопросам так и не было выработано.

Отметим, что любое явление в физике считается реальным, если оно наблюдается на опыте. Силы инерции хорошо наблюдаются на опыте в ускоренных системах отсчета, поэтому Ньютон, Эйлер. Мах, Эйнштейн и многие другие относились к этим силам как к реальным. Из опыта также следовало, что при ускоренном движении в протяженном теле возникает поле сил инерции, равнодействующая которых приложена к центру масс данного тела. Поскольку реальность полей и сил инерции подтверждалась опытами, разумно было поставить вопрос об изучении физических свойств поля инерции, порождающего силы инерции.

Именно с исследования полей инерции и начал Г. И. Шипов, Еще в 1979 году ему удалось вывести уравнение динамики полей инерции. Он нашел подход, который позволил связать поля инерции с кручением пространства (26,ч.1,с.4).

В 1988 году Шипов предложил новые фундаментальные уравнения физики, выдвигающие в качестве единого поля поле инерции. Эти уравнения трактуются как уравнения, описывающие структуру физического вакуума. Они обобщают все известные на сегодняшний момент фундаментальные уравнения физики и представляют собой самосогласованную систему нелинейных дифференциальных уравнений первого порядка, в которую входят геометризированные уравнения Гейзенберга, геометризированные уравнения Эйнштейна и геометризированные уравнения Янга—Милса.

Шипов ввел новые представления о структуре времени и пространства. Мы уже знаем, что пространство Ньютона трехмерное (X, Y, Z), наделено геометрией Евклида; пространство-время Эйнштейна четырехмерное (X, Y, Z, Ct), искривленное, наделено геометрией Римана; пространство-время в работе Шипова не только искривлено, как в теории Эйнштейна, но и закручено, как в геометрии Римана—Картана. Для учета кручения пространства Шипов ввел в геометризированные уравнения множество угловых координат: три пространственных угла (углы Эйлера) и три пространственно-временных угла (углы между временной и пространственными осями системы отсчета), что позволило ввести в теорию физического вакуума угловую метрику, определяющую квадрат бесконечно малого поворота четырехмерной системы отсчета (26, ч. 3, с, б).

Дальнейшее развитие работ Г. Шипова показало, что добавление вращательных координат приводит к всеобщей теории относительности (26, ч. 3, с. 27). Принцип всеобщей относительности обобщает как специальный, так и общий принципы относительности Эйнштейна и утверждает также относительность всех физических полей (25, с. 95), Фактически принцип всеобщей относительности представляет собой физическую реализацию философского тезиса: “Все в мире относительно”. Такова степень обобщения физического принципа, лежащего в основе теории вакуума.

Уравнения физического вакуума удовлетворяют принципу всеобщей относительности, разработанному Шиповым, — все физические поли, входящие в уравнение вакуума, имеют относительный характер; пространство событий теории вакуума имеет спинорную природу; в основном состоянии Абсолютный вакуум имеет нулевые средние значения момента, импульса и других физических характеристик.

Найденные решения уравнений Шипова описывают искривленное и закрученное пространство-время, интерпретируемое как вакуумные возбуждения, находящиеся в виртуальном состоянии. Эти решения начинают описывать реальную материю после того, как входящие в него константы (или функции) интегрирования отождествляются с физическими константами (112, с. 6).

Чрезвычайно важным является то, что уравнения вакуума и принцип всеобщей относительности после соответствующих упрощений приводят к уравнениям и принципам квантовой теории. Полученная таким образом квантовая теория оказывается детерминированной, поскольку в ее уравнениях в роли волновой функции выступает поле инерции (110, с. 12). Шипову удалось разрешить кризис в теоретической физике, получив ответы на вопросы, поставленные наукой много лет назад.

Волновая функция в уравнениях Шредингера и Дирака представляет собой реальное физическое поле — поле инерции; детерминизм и причинность в квантовой механике существуют, хотя вероятностная трактовка динамики квантовых объектов неизбежна; частица представляет собой предельный случай чисто полевого образования, при стремлении массы (или заряда) этого образования к постоянной величине. В этом предельном случае происходит возникновение корпускулярно-волнового дуализма и оптико-механической аналогии в чисто полевой теории (80, с. 50); современная квантовая теория не является полной, так как не согласуется с принципом вращательной относительности; в квантовой теории измеряется ситуация, представляющая собой комбинацию полей, образующих измерительный прибор и измеряемый объект(26,ч.1,с. 9).

Подтвердились догадки Эйнштейна, что квантовая теория не полна, и его предположения о том, что “более совершенная квантовая теория может быть найдена на пути расширения принципа относительности” (26, ч. 2, с. 48).

И сегодня квантовая теория, которую ученые называют полной и которая следует из уравнения теории физического вакуума, удовлетворяет всем требованиям Эйнштейна. На основании полученных результатов делается вывод, что мечта Эйнштейна о построении полной детерминированной квантовой теории путем обобщения уравнений общей теории относительности нашла свое воплощение в теории физического вакуума (80, с. 1).

Таким образом, принцип всеобщей относительности и теория физического вакуума связали между собой проблему сил и полей инерции в классической механике, проблему расходимостей в электродинамике и проблему завершенности квантовой механики, показав, что эти проблемы имеют единый источник — отсутствие знаний в современной физике о, пожалуй, самом фундаментальном физическом поле — поле инерции, которое выступает в роли единого поля, внутренним образом объединяющим все физические поля. Именно это поле, как выяснилось, искал великий Эйнштейн.

Создав теорию физического вакуума, Шипов сумел ответить и на вопросы, касающиеся сил инерции: силы инерции порождаются полем инерции, играющим роль единого поля в теории физического вакуума; поля инерции определяются кручением пространства, которое характеризует упругие свойства пространства, и имеют локальную природу; силы инерции являются одновременно и внешними, и внутренними по отношению к любой изолированной системе (26, ч. 3, с. 27).

Исключительно важным результатом работы Шипова является установление связи между полем инерции и торсионными полями, определяемыми кручением пространства.

Следует отметить также, что в результате исследований Г. Шилова программа единой теории поля переросла в теорию физического вакуума. Единым носителем полей (именно полей, а не взаимодействий) является физический вакуум — “фундаментальное поле”, по удачной терминологии академика И. Л. Герловина. и все поля: гравитационное, электромагнитное, торсионное (спиновое) — являются его различными фазами (84, с. 15).

Теория физического вакуума приводит к целому ряду следствий теоретического и практического характера (26,ч.3,с. 52):

• построение эйнштейновской ЕТП как теории физического вакуума;

• соответствие уравнений физического вакуума всем фундаментальным уравнениям современной физики;

• построение детерминированной квантовой теории, удовлетворяющей требованиям Эйнштейна;

• открытие новых типов фундаментальных взаимодействий. основанных на точном решении уравнений физического вакуума;

• теоретическое описание торсионного взаимодействия;

• принципиальная возможность создания движителя нового типа, использующего поля и силы инерции;

• создание излучателей и приемников монопольного электромагнитного излучения;

• создание приборов, использующих новые типы фундаментальных взаимодействий (например, торсионных) и многое другое,

Итак, российскому ученому Г. И. Шилову удалось блестяще завершить огромный труд плеяды выдающихся ученых и создать ЕТП, о которой мечтал и у истоков которой стоял великий физик Альберт Эйнштейн. Воистину, “если я видел дальше других, то только потому, что стоял на плечах гигантов” (Ньютон).

В конце XX века содержательной базой новой парадигмы стали принцип всеобщей относительности Шилова, геометрия Римана—Картана—Шилова и физический вакуум — материальная среда, передающая взаимодействия и рождающая элементарные частицы.

 







Дата добавления: 2015-10-01; просмотров: 409. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия