Студопедия — Свойства физического вакуума
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства физического вакуума






 

Для нас сейчас физический вакуум -— это то, что остается в пространстве, когда из него удаляют весь воздух и все до последней элементарные частицы. В результате получается не пустота, а своеобразная материя — Прародитель всего во Вселенной, рождающий элементарные частицы, из которых потом формируются атомы и молекулы.

А. Е. Акимов (11,с.24)

 

Так как в понятие вакуума вкладывается всепроникающая среда, находящаяся между частицами, то вакуум занимает все межчастичное пространство; следовательно, эту среду можно определить как бесчастичную форму материи, плотность которой изменяется соответственно действующим на вакуум силам. Плотность вакуума имеет весьма малое значение по сравнению с привычными для нас значениями плотности вещества: например, плотность вакуума, находящегося между молекулами газа при давлении в одну атмосферу составляет 10-15 г/см3, а плотность дистиллированной воды при тех же условиях — 1 г/см3 (20, с. 60).

Гравитация, присущая любым массам, присуща и массе вакуума. На основании этого постулата сила взаимодействия тела с любой частью вакуума будет определяться законом всемирного тяготения. То есть тела притягивают к себе вакуум подобно тому, как Земля притягивает находящиеся на ней тела. Поэтому при движении какого-либо тела вместе с ним будет двигаться (увлекаться) и окружающий его вакуум. Разумеется, это увлечение будет только в том случае, если на этот вакуум не действует большая сила (от гравитационного воздействия других тел), удерживающая вакуум от этого увлечения. Однако вакуум не просто увлекается за движущимся телом, а "выполняет роль подлинного управителя всякого движения. В образном представлении, вакуум, словно бульдог, вцепляется в любой макрообъект с тем большим усилием, чем массивнее его жертва. Вцепившись, он уже никогда не отпускает ее, сопровождая во всех странствиях по космическому пространству. Физически это означает, что вакуум и контролируемый им объект представляют собой замкнутую систему” (21, с, 27).

Уникальные опыты Физо и Майкельсона показали, что в природе нет абсолютно неподвижного вакуума. Вакуум, обладая массой, всегда увлекается тем телом, гравитационные силы которого преобладают, В указанных опытах таким телом является Земля, увлекающая околоземной вакуум (в опыте Майкельсона) и не позволяющая движущемуся на Земле телу увлекать вакуум, находящийся между частицами тела (в опыте Физо).

В современной интерпретации физический вакуум представляется сложным квантовым динамическим объектом, который проявляет себя через флуктуации. Физический вакуум рассматривают как материальную среду, изотропно (равномерно) заполняющую все пространство (и свободное пространство и вещество), имеющую квантовую структуру, ненаблюдаемую в невозмущенном состоянии (33. с. 4).

Для лучшего понимания физического вакуума было признано целесообразным рассматривать его как электронно-позитронную модель Дирака в ее несколько измененной интерпретации.

Представим физический вакуум как материальную среду, состоящую из элементов, образуемых парами частиц и античастиц (по Дираку — электронно-позитронная пара).

Если частицу и античастицу вложить друг в друга, то такая система будет истинно электронейтральной. А так как обе частицы обладают спином, то система "частица—античастица” должна представлять пару вложенных друг в друга частиц с противоположно направленными спинами. Вследствие истинной электронейтральности и противоположности спинов такая система не будет обладать и магнитным моментом (33, с. 5). Систему из частиц и античастиц в указанном выше виде, обладающую указанными свойствами, называют фитоном. Плотная упаковка фитонов и образует среду, называемую физическим вакуумом. Однако следует помнить, что эта модель весьма упрощена, и было бы наивно усматривать в построенной модели истинную структуру физического вакуума (рис. 1, а, б).

Рассмотрим наиболее важные в практическом отношении случаи возмущения физического вакуума разными внешними источниками (86. с, 940).

1. Пусть источником возмущения является заряд q (рис. 1, в). Действие заряда будет выражено в зарядовой поляризации физического вакуума, и это его состояние проявляется как электромагнитное поле (Е-поле). Именно на это указывал ранее в своих работах академик АН СССР Я. Б. Зельдович.

2. Пусть источником возмущения является масса m (рис, 1, г). Возмущение физического вакуума массой т будет выражаться в симметричных колебаниях элементов фитонов вдоль оси на центр объекта возмущения, как это условно изображено на рисунке. Такое состояние физического вакуума характеризуется как спиновая продольная поляризация и интерпретируется как гравитационное поле (G-поле). Такая идея была высказана еще А. Д. Сахаровым (87, с. 70). По его мнению, гравитация вообще не является отдельной действующей силой, а возникает в результате изменений квантово-флуктуационной энергии вакуума, когда имеется какая-либо материя, подобно тому, как это происходило с образованием сил в опыте Г. Казимира. А. Д. Сахаров считал, что присутствие материи в море частиц с абсолютно нулевой энергией вызывает появление несбалансированных сил, движущих материю, называемых гравитацией (86,с.940).

3. Пусть источником возмущения является классический спин (рис. 1, д). Спины фитонов, которые совпадают с ориентацией спина источника, сохраняют свою ориентацию. Спины фитонов, которые противоположны спину источника, под действием этого источника испытывают инверсию. В результате физический вакуум перейдет в состояние поперечной спиновой поляризации. Это состояние интерпретируется как спиновое поле (S-поле), то есть поле, порождаемое классическим спином. Такое поле называют еще торсионным полем (31, с. 31).

В соответствии с изложенным можно считать, что единая среда — физический вакуум может находиться в разных поляризационных состояниях, EQS-состояниях. Причем физический вакуум в фазовом состоянии, соответствующем электромагнитному полю, обычно рассматривается как сверхтекучая жидкость. В фазовом состоянии спиновой поляризации физический вакуум ведет себя как твердое тело.

Указанные соображения примиряют две взаимоисключающие точки зрения — точку зрения конца XIX века и начала XX века, когда эфир рассматривали как твердое тело, и представление современной физики о физическом вакууме как о сверхтекучей жидкости. Правильны обе точки зрения, но каждая для своего фазового состояния (33, с. 13).

РИС. 1 Диаграмма поляризационных состояний физического вакуума

 

Все три поля: гравитационное, электромагнитное и спиновое — являются универсальными. Эти поля проявляются себя и на микро-, и на макроуровнях. Здесь уместно вспомнить слова академика АН СССР Я. И. Померанчука; Вся физика — это физика вакуума”, или академика ЭАН Г. И. Наана: “Вакуум есть все, и все есть вакуум" (63,с.14).

В результате знакомства с теорией физического вакуума становится ясно, что современная природа не нуждается в “объединениях". В природе есть только физический вакуум и его поляризационные состояния, а “объединения” лишь отражают степень нашего понимания взаимосвязи полей (31, с. 32).

Следует отметить еще один чрезвычайно важный факт, касающийся физического вакуума как источника энергии.

Традиционная точка зрения сводилась к утверждению, что, так как физический вакуум является системой с минимальной энергией, то никакую энергию из такой системы извлечь нельзя. При этом, однако, не учитывалось, что физический вакуум — это динамическая система, обладающая интенсивными флуктуациями, которые и могут быть источником энергии. Возможность эффективного взаимодействия спинирующих (вращающихся) объектов с физическим вакуумом позволяет с новых позиций рассмотреть возможность создания торсионных источников энергии.

Согласно Дж, Уиллеру, планковская плотность энергии физического вакуума составляет 1095 г/см3, в то время как плотность энергии ядерного вещества равна 1014 г/см3. Известны и другие оценки энергии вакуумных флуктуации, но все они существенно больше оценки Дж. Уиллера (31, с. 34). Следовательно, можно сделать следующие многообещающие выводы:

• энергия вакуумных флуктуации весьма велика в сравнении с любым другим видом энергии;

• через торсионные возмущения возможно высвободить энергию вакуумных флуктуации.

Российские ученые полагают, что в физическом вакууме “упрятаны” скрытая материя и скрытая энергия, равные чуть ли не половине тех, что реализованы в виде Вселенной (113, с. 7).

 







Дата добавления: 2015-10-01; просмотров: 730. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия