УРАВНЕНИЕ ПЛОСКОЙ УПРУГОЙ ВОЛНЫ
Для упругих волн уравнение волны представляет собой выражение, которое задает смещение колеблющейся частицы как функцию координат равновесного положения частицы и времени. Пусть волна распространяется в направлении оси X, тогда . Эта функция должна быть периодической как относительно времени t, так и относительно координаты . Периодичность во времени вытекает из того, что описывает колебания частицы с координатой . Периодичность по координатам следует из того, что точки, отстоящие друг от друга на расстоянии, равном длине волны, колеблются одинаковым образом. Найдем вид функции в случае плоской волны, предполагая, что колебания носят гармонический характер. Пусть колебания точек, лежащих в плоскости , имеют вид: . Найдем вид колебаний точек в плоскости, соответствующей произвольному значению . Для того, чтобы пройти путь от плоскости до этой плоскости, волне требуется время ( – скорость распространения волны) (рис. 8.3). Следовательно, колебания частиц, лежащих в плоскости , будут отставать по времени на от колебаний частиц в плоскости , то есть будут иметь вид:
где – амплитуда волны. Начальная фаза волны определяется выбором начала отсчета и . Зависимость фазы рассматриваемой волны и от времени, и от пространственных координат означает, что каждое данное значение фазы распространяется в пространстве. Волна, распространяющаяся в противоположном направлении, описывается уравнением: . В физике обычно используют обозначение . Величину называют волновым числом. Используя это обозначение, уравнение плоской волны, распространяющейся в положительном направлении оси , можно записать в виде:
Это уравнение монохроматической волны, распространяющейся со скоростью в положительном направлении оси X. Различные точки волны в момент времени имеют разные смещения. Но ряд точек, отстоящих на расстояние одна от другой, в любой момент времени смещены одинаково (так как аргументы косинусов в уравнении (8.2) отличаются на и, следовательно, их значения равны). Это расстояние и есть длина волны . Она равна пути, который проходит волна за один период колебаний частиц среды. Скорость смещения элементов среды равна производной от смещения частицы по времени: . Таким образом, скорость смещения элементов среды меняется по тому же закону, что и само смещение, но со сдвигом по фазе на : скорость достигает максимума, когда смещение падает до нуля. Введенная выше скорость описывает распространение только бесконечной монохроматической волны. Она определяет скорость перемещения ее фазы и называется фазовой скоростью. Все приведенные рассуждения относятся к распространению волн в непоглощающей среде, то есть в среде, в которой механическая энергия не переходит в другие виды энергии. Замечание При выводе соотношения мы полагали, что амплитуда колебаний не зависит от координаты . Для плоских волн это справедливо, когда энергия волны не поглощается средой. При распространении же в поглощающей энергию среде наблюдается затухание волны, причем, как показывает опыт, в однородной среде затухание происходит по экспоненциальному закону: и, соответственно, уравнение плоской волны имеет следующий вид: .
|