Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

УРАВНЕНИЕ ПЛОСКОЙ УПРУГОЙ ВОЛНЫ





Для упругих волн уравнение волны представляет собой выражение, которое задает смещение колеблющейся частицы как функцию координат равновесного положения частицы и времени. Пусть волна распространяется в направлении оси X, тогда

.

Эта функция должна быть периодической как относительно времени t, так и относительно координаты . Периодичность во времени вытекает из того, что описывает колебания частицы с координатой . Периодичность по координатам следует из того, что точки, отстоящие друг от друга на расстоянии, равном длине волны, колеблются одинаковым образом.

Найдем вид функции в случае плоской волны, предполагая, что колебания носят гармонический характер. Пусть колебания точек, лежащих в плоскости , имеют вид:

.

Найдем вид колебаний точек в плоскости, соответствующей произвольному значению . Для того, чтобы пройти путь от плоскости до этой плоскости, волне требуется время ( – скорость распространения волны) (рис. 8.3). Следовательно, колебания частиц, лежащих в плоскости , будут отставать по времени на от колебаний частиц в плоскости , то есть будут иметь вид:

  (8.1)

где – амплитуда волны. Начальная фаза волны определяется выбором начала отсчета и . Зависимость фазы рассматриваемой волны и от времени, и от пространственных координат означает, что каждое данное значение фазы распространяется в пространстве.

Волна, распространяющаяся в противоположном направлении, описывается уравнением:

.

В физике обычно используют обозначение . Величину называют волновым числом. Используя это обозначение, уравнение плоской волны, распространяющейся в положительном направлении оси , можно записать в виде:

  . (8.2)

Это уравнение монохроматической волны, распространяющейся со скоростью в положительном направлении оси X. Различные точки волны в момент времени имеют разные смещения. Но ряд точек, отстоящих на расстояние одна от другой, в любой момент времени смещены одинаково (так как аргументы косинусов в уравнении (8.2) отличаются на и, следовательно, их значения равны). Это расстояние и есть длина волны . Она равна пути, который проходит волна за один период колебаний частиц среды.

Скорость смещения элементов среды равна производной от смещения частицы по времени:

.

Таким образом, скорость смещения элементов среды меняется по тому же закону, что и само смещение, но со сдвигом по фазе на : скорость достигает максимума, когда смещение падает до нуля. Введенная выше скорость описывает распространение только бесконечной монохроматической волны. Она определяет скорость перемещения ее фазы и называется фазовой скоростью.

Все приведенные рассуждения относятся к распространению волн в непоглощающей среде, то есть в среде, в которой механическая энергия не переходит в другие виды энергии.

Замечание

При выводе соотношения мы полагали, что амплитуда колебаний не зависит от координаты . Для плоских волн это справедливо, когда энергия волны не поглощается средой. При распространении же в поглощающей энергию среде наблюдается затухание волны, причем, как показывает опыт, в однородной среде затухание происходит по экспоненциальному закону:

и, соответственно, уравнение плоской волны имеет следующий вид:

.







Дата добавления: 2015-10-02; просмотров: 658. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия