РЕСНИЧНЫЕ – CILIOPHORA
Простейшие относятся к примитивным одноклеточным эукариотам. Общепризнано, что эукариоты произошли от прокариот. Существуют две гипотезы происхождения эукариот от прокариот. Сукцессивная гипотеза утверждает, что мембранные органеллы клетки (ядро, митохондрии, пластиды, аппарат Гольджи) возникли постепенно (сукцессивно) из мембраны клетки прокариот. Эндосимбиотическая гипотеза предполагает, что в эволюции эукариот большую роль сыграл симбиоз различных прокариот. Допускается, что митохондрии и хлоропласты могли развиться из симбиотических бактерий, живших в клетке хозяина. Однако каждая из указанных гипотез имеет слабые стороны. Саркомастигофоры обладают многими первичными признаками (плезиоморфными), общими с предками всех простейших. Однако саркомастигофоры неоднородны. Пашер (1914) предположил, что наиболее плезиоморфной, т. е. близкой к исходной, группой следует считать жгутиковых: А. Н. Опарин (1924), придерживались другой позиции и рассматривали в качестве первичной группы саркодовых. По их мнению, отсутствие оболочки, непостоянство формы тела, наличие псевдоподий и гетеротрофное питание — примитивные признаки. В дальнейшем выяснились новые факты, проливающие свет на происхождение Protozoa.
На основании этих данных подавляющее большинство ученых предполагают, что предками современных Protozoa были древние Sarcomastigophora с разнообразными способами питания и со жгутиками примитивного строения. От этих предковых форм развились три ветви: саркодовые, эволюционно продвинутые жгутиконосцы и опалиновые. На основе всего сказанного можно предложить следующую схему филогенетических отношений для Protozoa. Центральную группу для экологической радиации представляли, по-видимому, многообразные древние саркомастигофоры с преобладанием жгутиковых форм. Как и теперь, среди них, возможно, господствовали адаптации к активному движению в воде. Саркодовые, утратив жгутики, приобрели амебоидную форму и перешли к ползающему образу жизни и фагоцитозу (строго голозойному питанию). Их дальнейшая специализация к бентосному существованию сопровождалась образованием защитных раковин (раковинные корненожки, фораминиферы). Некоторые из саркодовых проявили способность образовывать скелетные иглы, а затем и сложный радиальный скелет (радиолярии, солнечники). Так возникли парящие планктонные простейшие. Другое генеральное направление в экологической эволюции Protozoa связано с прогрессом клеточного строения и возникновением крупных полиэнергидных, активно плавающих форм — инфузорий. Эта группа претерпела широкую экологическую радиацию: среди них немало как плавающих, так и ползающих, сидячих бентосных форм, скважников — интерстициалов, заселяющих промежутки в грунтах. Паразитические простейшие возникли исторически позже, после появления на Земле многоклеточных животных. К паразитизму эволюционно приспособились представители практически всех типов одноклеточных, а четыре типа представляют исключительно паразитов. ПРОСТЕЙШИЕ. ТИП ИНФУЗОРИИ, ИЛИ РЕСНИЧНЫЕ – CILIOPHORA
ПЛАН:
1. Особенности организации клетки инфузорий. 2. Строение ядерного аппарата инфузорий. 3. Размножение и конъюгация инфузорий. Жизненный цикл инфузорий. 4. Классификация типа. 5. Экологическая радиация простейших.
1. Всего известно около 7500 видов инфузорий. Большинство –свободноживущие морские и пресноводные. Реже – симбионты и паразиты. Высокоорганизованные простейшие с наиболее сложной системой органелл. Клетка инфузории покрыта пелликулой, образует которую наружный слой эктоплазмы. Пелликула состоит из наружной двойной мембраны, внутренней двойной мембраны и просвета между ними. Снаружи пелликула часто бывает скульптурирована, образуя закономерно расположенные утолщения, что повышает ее прочность и эластичность. Под пелликулой находится эктоплазма, в которую погружены многие органеллы. Прежде всего это кинетосомы – базальные тельца ресничек. От базальных телец отходят три корневые структуры: кинетодесма и два пучка микротрубочек. Они обеспечивают синхронность веслообразных движений ресничек. В эктоплазме инфузорий могут находиться сократительные волоконца — мионемы и защитные органеллы — трихоцисты, которые при раздражении «выстреливают» и превращаются в упругую нить. Совокупность пелликулы и эктоплазмы со всеми структурами образует опорный комплекс – кортекс клетки инфузории. Структуры кортекса видоспецифичны и используются в систематике.
Рисунок 1. Инфузория туфелька (Paramecium). Строение поверхностного слоя (кортекса). 1 – пелликула, образующая характерные шестигранники, 2 – реснички, 3 – базальные тельца ресничек (кинетосомы), 4 – поверхностные пелликулярные фибриллы (кинетодесмы), 5 – трихоцисты Реснички инфузорий имеют сходное строение со жгутиками. Ресничный аппарат (цилиатура) – разнообразен. Реснички могут склеиваться в пучки — цирры, в пластинки — мембранеллы или мембраны. Особо сложный ресничный аппарат около рта. В зависимости от образа жизни инфузорий их форма тела и адаптации ресничного аппарата сильно варьируют. Многие плавающие инфузории имеют обтекаемую форму тела и равномерное распределение ресничек (инфузория-туфелька — Paramecium). Сидящие и прикрепляющиеся инфузории нередко имеют форму трубы или колокольчика. На расширенном конце тела около рта обычно располагаются длинные реснички, или мембранеллы (сувойка — Vorticella, трубач — Stentor). Ползающие инфузории уплощены и снабжены особыми «ножками» — циррами (стилонихия — Stylonichia).
Имеется сложная система органелл пищеварения. Рот нередко расположен во впадине тела – воронке (перистом), окруженной мембранеллами. При помощи ресничек пища загоняется в рот (цитостом). Рот переходит в длинную глотку (цитофаринкс), погруженную в эндоплазму. Пищевые комочки, попавшие в эндоплазму, тотчас же окружаются мелкими пузырьками — везикулами с ферментами, что способствует образованию пищеварительных вакуолей. В начале пищеварения в вакуолях образуется кислая среда, а на последующих фазах – щелочная, что аналогично процессам пищеварения у высших животных. Непереваренные частицы выбрасываются из клетки в определенном месте – порошице (цитопрокт). Некоторые хищные инфузории обладают ротовым хоботком, прокалывающим покровы одноклеточной жертвы (Didinium). У пресноводных имеются сократительные вакуоли – органеллы осморегуляции и выделения. Так, у инфузории-туфельки две сократительные вакуоли с 5–7 приводящими каналами каждая. Вначале избыток жидкости собирается в лучеобразные каналы, а из них выпрыскивается в центральную вакуоль, представляющую собой резервуар, из которого затем выталкивается наружу.
2. В эндоплазме инфузорий расположен ядерный аппарат. Инфузориям свойствен ядерный дуализм. Крупные ядра — макронуклеусы регулируют клеточный метаболизм, а мелкие ядра — микронуклеусы участвуют в половом процессе. Макронуклеусы богаты ДНК и обладают высокой плоидностью в отличие от диплоидного микронуклеуса. Оно содержит несколько сот, или несколько тысяч диплоидных комплексов хромосом. В макронуклеусах происходит синтез РНК. ДНК макронуклеуса способна и к репликации. В микронуклеусах же происходит лишь репликация ДНК перед делением, а синтез РНК не осуществляется.
Рисунок 2 – Инфузория Paramecium caudatum: 1 — сократительная вакуоль; 2 — приводящие каналы сократительной вакуоли; 3 — микронуклеус; 4 —макронуклеус; 5—экскреторная пора; 6 —реснички; 7— трихоцисты; 8 — пищеварительная вакуоль; 9 — перистом; 10 — ротовая воронка; 11 —цитостом; 12 —цитофаринкс; 13 —отделяющаяся пищеварительная вакуоль; 14 — цитопрокт 3. Инфузории размножаются бесполым путем — делением клетки надвое в поперечном направлении, причем микронуклеус делится митотически, процесс деления макронуклеуса носит название «сегрегации геномов» (формирование и удвоение хромосом без деления ядра - эндомитоз. Макронуклеус вытягивается и перешнуровывается, удвоившиеся наборы хромосом распределяются между дочерними ядрами). Половой процесс — конъюгация не сопровождается размножением, т.е. увеличением числа особей. Конъюгация — особая уникальная форма полового процесса, свойственная только инфузориям. При конъюгации инфузории попарно соединяются и обмениваются в результате миграции ядрами. Перед конъюгацией в каждой особи макронуклеус распадается, а микронуклеус мейотически делится, образуя четыре гаплоидных ядра, из которых три рассасываются, а оставшееся ядро митотически делится еще на два. Одно из этих ядер — стационарное — остается в клетке, другое — мигрирующее — переходит в другую особь. После обмена мигрирующими ядрами происходит слияние стационарного ядра с «чужим» мигрирующим ядром с образованием диплоидного ядра — синкариона. Затем особи расходятся. Из синкариона в каждой клетке формируется макронуклеус и микронуклеус. В результате конъюгации образуется ядро двойственной природы с измененным геномом, что обеспечивает большую пластичность организма. Образование макро- и микронуклеуса из синкариона происходит следующим образом. Синкарион митотически делится 1, 2 или 3 раза, и часть ядер преобразуется в макро-, а другая — в микронуклеусы. В макронуклеусах идет повторная репликация молекул ДНК и происходит повышение плоидности. Масса ядер при этом возрастает. Многоядерная инфузория делится с распределением макронуклеусов и дополнительным делением микронуклеусов. Иногда происходит ядерная реорганизация без конъюгации. В этом случае в одной особи образуются стационарное и миграционное ядра, которые потом сливаются; затем из ядра формируются макро- и микронуклеус. Такой процесс называется автогамией. При этом ядро не получает двойственной наследственности, однако при мейозе всегда происходят геномные мутации, что приводит к возникновению измененного генотипа.
4. Инфузории делятся на два класса: класс Ресничные инфузории (Ciliata) и класс Сосущие инфузории (Suctoria). Представители ресничных инфузорий обладают ресничками на протяжении всех фаз развития, а сосущие лишены ресничек на большей части жизненного цикла, и только на ранних фазах развития дочерняя клетка-«бродяжка» снабжена ресничками.
|