Слайд 8.
Слайд 2.
В промышленных условиях пиролиз углеводородов осуществляют при температурах 800—900°С и при давлениях, близких к атмосферному (на входе в пирозмеевика ~ 0,3 МПа, на выходе — 0,1 МПа избыточных). Время пребывания сырья в зоне реакции составляет 0,1 — 0,5 сек.
Необходимо учитывать предельно допустимую температуру современных хромоникелевых сплавов, из которых изготавливаются змеевики, и резкое повышение коксообразования на стенках этих сплавов при повышении температур. Не увеличивая градиент температур между стенкой пирозмеевика и паросырьевым потоком, быстрый нагрев можно обеспечить увеличив удельную поверхность пирозмеевика, то есть поверхности на единицу объёма паросырьевого потока. Большинство фирм разработчиков печей пиролиза пошли по пути конструктивного выполнения пирозмеевиков ветвящимися с переменным диаметром труб. Так, если изначально пирозмеевики представляли собой длинную трубу постоянного диаметра, согнутой на равные части (в змеевик) для уменьшения конструкционных размеров печи, то теперь пирозмеевики изготавливаются из большого количества входных труб (10 — 20) малого диаметра, которые объединяются, и, в итоге, на выходе змеевик состоит из 1 — 2 трубы значительно большого диаметра. В таких пирозмеевиках достигается высокая теплонапряженность на начальном участке и низкая — на конце, где температура стенки играет высокую роль в процессе коксообразования. Слайд 9. Первоначально пирозмеевики в радиантной секции находились в горизонтальном положении, время контакта в таких печах составляло не меньше 1,0 сек, температура пиролиза — не выше 800 °C. Переход с горизонтальных на вертикальные свободно висящие трубы радиантного пирозмеевика позволило использовать более жаропрочные, хрупкие материалы пирозмеевиков, что и привело к появлению печей с высокотемпературным режимом и с коротким временем пребывания потока в пирозмеевиках. Для резкого предотвращения протекания нежелательных вторичных реакции, на выходе из печи устанавливают закалочно-испарительные аппараты. В трубном пространстве (ЗИА) происходит резкое охлаждение (закалка) продуктов реакции до температур 450—550 °С. В межтрубном пространстве происходит испарение котловой воды, которая, как упоминалась выше, используется для получения пара высокого давления. Ниже в таблице 1 приведены данные по выходам некоторых продуктов на современных печах пиролиза. Слайд 10. Сырьевая база Современная мировая структура сырья пиролиза представлена в таблице 1.
Слайд 11. Таблица 1 — Выход некоторых продуктов пиролиза различного углеводородного сырья
Степень использование этих видов сырья в отдельных странах приведена в таблице 3.
Слайд 13. Таблица 3. Преобладающие виды сырья в ведущих странах мира.
Слайд 14. В России структура сырья пиролиза в 2002 г. имела следующую картину: этан — 7,9 % масс, сжиженные газы (пропан, бутан) — 29,6 % масс, ШФЛУ — 6,5 % масс, прямогонный бензин — 56,0 % масс. Это, по сравнению со структурой сырья пиролиза СССР 1990 г., показывает увеличение доли газового сырья на 20 % масс. Данный факт объясняется тем, что в период 1990—1998 гг. в Российской Федерации резко упали объёмы добычи и переработки нефти. Однако, в связи с увеличением в России объёмов добычи нефти с 301 млн т. в 1998 г. до 458,8 млн.т. в 2004 г., российская структура сырья пиролиза претерпела определённые изменения в сторону увеличения доли жидкого углеводородного сырья. В результате этого, структура сырья пиролиза в России на сегодняшний день имеет следующий вид: этан — 8,0 % масс., сжиженные газы (пропан, бутан) — 24,0 % масс., ШФЛУ — 6,7 % масс., прямогонный бензин — 61,3 % масс.
Уровень производства низших олефинов
|