Студопедия — Инактивированные (убитые) Живые
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Инактивированные (убитые) Живые






1. коклюш 1. туберкулёз

2. дифтерия 2. сиб ирская язва

3. столбняк 3. сыпной тиф

4. холера 4. чума

5. брюшной тиф 5. туляремия
6. лептоспироз 6. бруцеллёз и др.

7. менингит - гемофильная
типа Б (ХИБ). DKTP: комбинированная вакцина против дифтерии, коклюша, столбняка и полиомиелита. DTP: комбинированная вакцина, подобная DKTP, но без коклюшного антигена. MMR: комбинированная вакцина против свинки, кори и коревой краснухи. HIB: вакцина против вируса haemophilus influenzal B, вызывающего менингит. BCG: вакцина против туберкулеза. Lariam: профилактическое средство против малярии. Mantoux: проба Манту с туберкулином. Примечание: ОЦЕНКА специфического иммунитета (постинфекционного или поствакцинального), в том числе рабочие титры защитных антител, определяются разными методами исследования. В любом случае -- после перенесения болезни или после вакцинации следует установить степень защищённости от той или иной инфекционной болезни. Такие исследования проводят диагностические лаборатории микробиологического профиля. Проверка рекомбинантных лекарственных средств - высокотехнологический эксперимент, требующий огромных затрат. "Неизвестность" - мы ведь не в состоянии проверить безопасность этой генно-инженерной продукции. Увы, мы в этом отношении очень далеки от уровня передовых лабораторий мира и практически совершенно не ориентированы на контроль подобной продукции. Очевидно, США были готовы к контролю генно-инженерных лекарственных препаратов, ибо уже в 1986 г. их Комитет контроля качества лекарств и пищевых продуктов впервые выдал лицензию на производство вакцины против гепатита В, полученной рекомбинантным способом. Так в США вслед за рекомбинантным альфа-интерфероном, а затем и человеческим гормоном роста, созданы генно-инженерный инсулин и вакцина против гепатита В. Не менее важен тот факт, что в США, Германии, Франции, Японии и других государствах, производящих вакцины, предприятия производители застрахованы. Поэтому, если возникают судебные иски, конфликты по поствакцинальным осложнениям и фирмы терпят ущерб, они вправе отказаться от производства того или иного препарата. Именно так и произошло в США, когда две фирмы из трех отказались от изготовления вакцин. Были случаи, когда судебные иски доходили до выплаты 10 млн долларов. Поскольку во всём мире проводится вакцинация BCG новорожденным, также как и в России, и странах бывшего СССР, проводимые мероприятия являются экспериментом, потому что "проводят оценку эффективности на фоне массовой иммунизации новорождённых против гепатита В и туберкулёза". Этот эксперимент, невероятно серьёзная нагрузка на организм новорождённых, как "широкомасштабная вакцинация на предмет выявления патологических синдромов" - в масштабе государства, предоставившем для таких наблюдений неограниченное число собственных детей... К тому же "патологические синдромы" могут проявиться и год спустя, и пять лет и значительно позже... Существуют данные, что вакцина спустя 15-20 лет может вызвать цирроз печени, а главное, не защищает организм ни от туберкулёза ни от гепатита. Одним словом, начался своего рода "вакцинальный бум", подобный затянувшемуся "лекарственному буму". Правда, в последнем случае продвигаются фармакологические средства, которые, в отличие от вакцин, предназначены для лечения. Гражданам следует быть крайне осторожными при выборе этих профилактических средств и соглашаться на проведение "профилактики иммунной системы" лишь в случае серьёзной необходимости или опасности. Низкое качества вакцин, нарушение правил хранения и реализации готовых биологических препаратов часто, приводят к неосознанным трагедиям, ценой всему этому может стать здоровье и жизнь ребенка. Эксперименты, проводимые на животных, характеризуются крайне низкой степенью достоверности. Следовательно, вакцины не изучены на безопасность. Альтернативные биологические модели используются крайне редко. Самое удивительное то, что такое положение, по-видимому, мало кого беспокоит. Почему так происходит? С одной стороны, из-за непонимания и непростительного безразличия к тому, что называется системой контроля, отвечающей мировым стандартам. С другой - гораздо "выгоднее" распространять откровенную ложь о том, что вакцины будто бы достаточно хорошо изучены на безопасность. С третьей - разобщенность специалистов не позволяет вникнуть в детали системы контроля. Только при глубоком знании генетических признаков возбудителей инфекционных болезней можно отобрать вакцинные штаммы и осуществлять грамотно контроль, гарантируя специфическую и неспецифическую безопасность препарата. Наряду с этим, о дремучей запущенности и "долголетней нерешенности" всех этапов производства зарубежных вакцин докладывают сейчас все те же кураторы, которые не одно десятилетие вводили в заблуждение общественность, прославляя и восхваляя "лучшие в мире вакцины". На самом деле это тоже было ложью. Под специфической безопасностью подразумевается отсутствие инфекционного агента, используемого в процессе приготовления препарата. Под неспецифической безопасностью - полное отсутствие любых балластных компонентов, не относящихся к выработке противоинфекционного специфического иммунитета.

"Трудности производства инактивированных вакцин заключаются в необходимости строгого контроля за полнотой инактивации, а живых -- за возможной реверсией вирулентности возбудителя", - то есть за восстановлением его инфекционной активности. "Остаточные" количества возбудителя (даже одной вирусной клетки) могут привести не к вакцинации, а к развитию инфекционного процесса среди восприимчивого контингента новорожденных и ослабленных детей. Таким образом: во-первых, систематически должен осуществляться контроль вакцин на специфическую безопасность. При этом необходимо использовать самые технологичные, высокочувствительные методы и не только проверки на животных; во-вторых, необходим контроль за неспецифической безопасностью. В данном случае речь идет о полном удалении из состава биопрепаратов любых агентов, вредных для здоровья детей; в-третьих, в комплексных вакцинах должен осуществляться контроль на выявление отрицательного взаимовлияния антигенов, приводящего к снижению или отсутствию специфической активности. Так должно быть но это не говорит о том, что так будет! Вот какие данные приводит русская Проф.др.Г.Червонская: Из протокола опыта по контролю за действием вакцин следует, что препарат признается "качественным и безопасным"... для грудных детей, если 50% мышей после применения на них вакцины выживают - чудовищная методика в конце XX века для препаратов, используемых в "профилактике здоровья" детей! Трудно поверить в то, что нами было обнаружено в составе АКДС при исследовании более 300 серий. Не случайно появилась статья, представленная в "Журнал микробиологии, эпидемиологии и иммунобиологии". Эта работа выполнена с иммунологами и генетиками. Статья содержала очень важные сведения, однозначно подтверждающие высокую токсичность химических веществ, содержащихся в АКДС. "Морские свинки, крысы, кролики - все эти модели недостаточно стандартные и малопригодные для апробации на них в полном объеме выпускаемых вакцин". И если продолжать контролировать безопасность все на тех же морских свинках, ссылаясь на "недоусовершенствованные" собственные данные, то к трагедии наших малышей все благие намерения в отношении изучения безопасности вакцин как были 150 лет тому назад "актуальными и перспективньми", так и остались, приобретя ко всему прочему форму благих пожеланий и деклараций. Давайте рассмотрим и проанализируем ситуацию на примере компонентов входящих в состав вакцин и то, что пишется в аннотации к применению. Какие это биопрепараты? С какой целью такое количество химических веществ - 500 мкг/мл формалина и 100 мкг/мл мертиолята - используется в АКДС вакцине? Многочисленные выписки из протоколов российских ученых подтверждают их присутствие для подстраховки стерильной работы на предприятиях, изготавливающих эти "биопрепараты". Специально обращаю ваше внимание: не для стабильности, сохранения свойств вакцины, а для "гарантии стерильности". Что ж тут удивительного, когда многочисленные официальные документы свидетельствуют об отсутствии стерильных условий при изготовлении АКДС-"вакцины", например: "Материальная база и техническая оснащенность биопредприятий крайне неудовлетворительны, они не соответствуют не только международным требованиям. "Исследование иммунологической безопасности вакцин является новым направлением в оценке качества вакцин и их стандартизации. Иными словами, считается нормой, что: -- во-первых, в России не умеют готовить препараты в стерильном виде, что и обусловливает добавление к вакцинам антибактериальных химических веществ. Значит, уже несколько антибактериальных компонентов входящих в состав препаратов вводятся в организм грудных детей; -- во-вторых, мы ещё не научились определять их основное предназначение - влияние на функциональное состояние иммунокомпетентных клеток. То есть, если провести аналогию, то представьте себе кардиотропные средства без изучения их основного показателя - влияния на сердечно-сосудистую систему. Абсурд! -- Полная изоляция отечественных российских предприятий, производящих вакцины и сыворотки от всех достижений смежных дисциплин в последние полвека привели неприкасаемое "прививочное дело" к признанию того, что будто бы "вторым свойством вакцинного препарата является его побочное действие, проявляющееся в поствакцинальных осложнениях, в том числе в сенсибилизации организма, привитого к широкому спектру антигенов" - это довольно открытое и искреннее признание. Не можем качественно производить и контролировать вакцины, отсюда лавиноподобное количество вакцин от разных "добродетелей" везущих нам не завтрашние и не сегодняшние технологии, а позавчерашние - по сути, отходы от их современного производства, или те вакцины, которые необходимо исследовать в "широкомасштабных экспериментах". Чаще это именуют "широкомасштабными наблюдениями", а задача одна - опыты на наших детях! Поэтому, когда вы столкнетесь с утверждением: "вакцина отвечает всем требованиям ВОЗ", не обольщайтесь, поскольку это значит, что она не всегда соответствует высоким требованиям по стандартизации и безопасности, предъявляемым ко всем лекарственным средствам и пищепродуктам. В многих публикациях нередко слова "биопрепараты" или "вакцина" берутся в кавычки, хотя в разнообразных международных справочниках их преподносят как "медицинские иммунобиологические препараты". Однако, истинных биопрепаратов среди инактивированных вакцин не существует, они все содержат химические вещества, оставшиеся после инактивации, и дополнительные добавки. Возможно, биологическая суть относится к высокоочищенным, действительно, биопрепаратам-иммуноглобулинам (не содержащим консервантов, но это относится не ко всем иммуноглобулинам), интерферонам, некоторым живым вакцинам. Дело в том, что многолетними экспериментально-контрольными исследованиями установлено: инактивированные вакцины не являются ни биологическими, ни иммунологическими. С сожалением нужно признать отсутствие второй характеристики и в отношении противовирусных вакцин. Они также не изучены по своему влиянию на иммунокомпетентные клетки. Приготовленные даже по единым техническим требованиям, изготовляемые, как в разных, так и в условиях одного производства, вакцины существенно отличаются друг от друга по иммуногенной активности. Это зависит от нестандартности применяемых сред, условий ведения производственных штаммов, способов обезвреживания антигенов, качества сорбента и многих других, трудно учитываемых факторов. Тем более, что никогда и никем не определялась их "иммуногенная активность". Сложно было с иммунологическими методиками в 80-90е годы XX столетия, но кто же мешал "здравоохранке" осуществить это лет десять назад. Однако в детской практике всемирного здравоохранения продолжается глобальное применение химико-генетических конгломератов, именуемых вакцинами, содержащих, кроме того, еще множество балластных токсических компонентов, не имеющих никакого отношения к целенаправленному процессу иммуногенеза. Напрочь забыты заветы Дженнера и предупреждения о том, что вакцина всегда "неизбежно небезопасна". Полувековая "профилактика здоровья" подобными вакцинами приводит к росту иммуноослабленных поколений и синдрому врожденного иммунодефицита. Непонимание глубочайшей невежественности в области иммунологии, о полной неинформированности населения в области достижений науки и техники, а также о состоянии здоровья современных детей, подростков, молодежи, молодых родителей, ведет к постепенному вырождению населения планеты. "В последние годы в мире происходят процессы, требующие от каждого думающего человека определения своего места в общем потоке человеческого мышления".

О прямой опасности химических веществ входящих в состав вакцин.
Ежедневно прививаются тысячи детей. Им вводят токсические вещества, выращенные на органах животных, раковых клетках, абортированных плодах и гнойных секретах, разлагающихся отравляющих субстанциях. Немногие из нас интересуются, откуда же достают этих вирусов и как их выращивают в лабораториях? Хотите узнать о производстве и изготовлении вакцин? Не часто случается, что обсуждение производства биопрепаратов может вывернуть желудок наизнанку. Вакцины делают из самых омерзительных и грязных веществ на планете - это не укладывается в нормальном сознании. Медицинская наука подбирает биологические отбросы в надежде создать препараты для "предотвращения" болезней, а мы одураченные пропагандой всеобщего оздоровления - не знаем, что на самом деле прививки, приводят к увеличению заболеваемости. Опасные патогенные вирусы и микробы растут на всевозможных питательных "средах". Если внутри организма существуют нормальные условия, и высокая степень резистентности, то вызывающие заражение вирусы и микробы просто не смогут расти в таких условиях. Разумно, что для того, чтобы сделать вакцину, производители должны откуда-то получить вирус, например гепатита, поэтому его берут от больных гепатитом. Первые вирусы гепатита 1970-х гг. выращивали на крови гомосексуалистов, так как последние имели высокий уровень заболеваемости гепатитом. Сегодня производители биопрепаратов "продвинулись" ещё дальше, они собирают выделения больных гепатитом и на этой среде культивируют вирус. Какие это ещё выделения?...Напрягите воображение. В производстве вакцин всё идёт в дело. А что вы думаете об органах трупа или о крови людей, умерших от гепатита? Как только вирус выделен, он должен выращиваться на специфической среде... Используются ткани и органы животных, соединённые с соответствующей культуральной средой и "питательными веществами". Клетки почек детёнышей хомяков, обезьяньи почки, HeLa-клетки (раковые клетки умершей от рака шейки матки Генриетты Лэкс), ткани абортированного плода (для производства краснушной вакцины RA 27/3) и другие органы животных. Весь этот хлам и биологический мусор используется в производстве вакцин. Всё это - чужеродный генетический материал, делающий вакцины опасными после проникновения в детский организм. Вирусы размножаются и вырастают, их инактивируют сильным канцерогеном формалином или другими агентами. Ошибочно подразумевают, что добавленные к вакцинам: ртуть (тиомерзал), фенол, алюминий, антибиотики, - увеличивают их чистоту и эффективность. Доказано, что вирусы плохо размножаются и растут в здоровых организмах, поэтому для их производства используются больные животные организмы. Например, отобранные для раковых опытов мыши не могут заболеть раком до тех пор, пока их не переведут на специальную диету. По логике, - мы не мыши, - и мы тоже не можем заболеть раком до тех пор, пока мы правильно питаемся. Что такое биотехнология. Биотехнология -- многоотраслевая наука. Но, пожалуй, наиболее почетное место в ней занимает, помимо генной инженерии, наука об искусственном культивировании изолированных клеток и тканей. Оторванная от коллектива себе подобных клетка в пробирке сохраняет "память" - генетическую информацию, заложенную родителями. Но специальность (специализацию) она утрачивает и образует при делении нечто аморфное, напоминающее по форме морскую губку. Это ткань, которая возникает не только в пробирке, но и в естественных условиях. Помимо утраты узкой специализации клетка порой начинает вести себя, словно пациент сумасшедшего дома. Например, активные гены вдруг застопориваются, а "спавшие" ни с того ни с сего начинают интенсивно работать. Клетка в "клетке", то есть в пробирке, может резко изменить соотношение ферментных и структурных белков. В ней увеличивается число молекул РНК, синтезирующих в обилии те белки, к производству которых клетка ранее никак не относилась. Однако стоит предоставить "узнице" определенные условия, как она вновь приобретает какую-то специализацию, причем не обязательно "старую". Изменения, наблюдаемые в изолированной культуре, могут возникать вследствие мутаций специфических генов и хромосомных перестроек. Частота, тип и стабильность изменчивости зависят от генотипа исходного материала и физиолого-биохимического состояния ("настроения") клетки. Высказано предположение, что условия изолированной культуры приводят к глубокой клеточной дестабилизации. Широкий спектр вариантов, образующихся из культивируемого материала, является отражением дестабилизации, за которой следуют действие отбора и вторичные наследственные изменения в популяции клеток. Наблюдаемая изменчивость имеет большое значение при применении культуры клеток и тканей. Воздействие мутагенами - веществами или радиацией, вызывающими наследственные изменения, увеличивает частоту измененных клеток, а использование селективных условий (например, повышенного инфекционного фона) создает предпосылки для размножения только измененных в нужном направлении клеток. Однако многие исследователи, отказываются от использования мутагенов, чтобы избежать добавочных нежелательных мутаций. Тем более, что мутантных клеточных линий возникает вполне достаточно и без их вмешательства. Что представляют собой питательные среды. В любой клеточной культуре различают клеточную и жид­кую фазы. Жидкая фаза обеспечивает жизнедеятельность кле­ток культуры и представляет собой питательные среды различ­ного состава и свойств. Все среды по своему назначению делятся на ростовые и под­держивающие. В составе ростовых сред должно содержаться больше питательных веществ, чтобы обеспечить активное раз­множение клеток для формирования монослоя на поверхности стекла или достаточно высокую концентрацию клеточных эле­ментов в суспензии (при получении суспензионных культур). Поддерживающие среды фактически должны обеспечивать лишь переживание клеток в уже сформированном монослое при раз­множении в клетках вирусных агентов. Ростовые и поддерживающие среды многокомпонентны. В их состав могут входить как естественные продукты (амниотические жидкости, сыворотки животных), так и субстраты, полу­ченные в результате частичной обработки естественных продук­тов (эмбриональные экстракты, гидролизат лактальбумина, гемогидролизат, аминопептид и тд.), а также синтетические хи­мически чистые вещества (аминокислоты, витамины, соли). В качестве примера питательной среды, полностью состоя­щей из естественных компонентов, можно назвать среду Бакли, предложенную для выращивания клеточных культур из почеч­ного эпителия обезьян. В эту среду входит коровья амниотиче-ская жидкость (85%), лошадиная сыворотка (10%) и коровий эмбриональный экстракт (5%). Неотъемлемым компонентом большинства ростовых сред является сыворотка животных (телячья, бычья, лошадиная, свиная), без наличия 5--10% которой размножение клеток и формирование монослоя не происходит. В ростовые питательные среды, а так же в буферный раствор для промывания тканей добавляют антибиотики. Их вводят в среду непосредственно перед употреблением из расчета 1 мл основного раствора антибиотиков на 500 мл среды. Известны такие первичные культуры, как культура фибробластов куриного эмбриона, культура клеток почки теленка, лейкоциты крови быков и баранов, эмбрионы коров. По мере смены питательных сред клетки меняют свою морфологию. Часть клеток округляется. Большинство клеток стягивается к центру, и монослой приобретает звездча­тый вид. Сами клетки при этом несколько удлиняются. Через 7 - 10 смен питательной среды в матрасах, как правило, начинают появ­ляться новые клеточные элементы, причем в разных культурах они имеют разную морфологию. В культуре клеток почки куриного эмбриона в центре моно­слоя или между стянутыми его участками появляются округ­ленные клеточные элементы, из которых постепенно формиру­ются скопления в виде небольших колоний. В культуре клеток почки обезьяны появляются одиночные образования, напомина­ющие зерна. После переноса культуры атипичных клеток в новые условия наблюдение за основной культурой целесообразно продолжать, так как процесс выведения новой клеточной линии весьма сло­жен, и далеко не всегда отобранные атипичные элементы дают начало жизнеспособной линии перевиваемых клеток. Необхо­димо, чтобы вся работа по получению новых клеточных линий, продолжающаяся в течение многих месяцев, проводилась с од­ними и теми же питательными средами, сыворотками животных и сериями антибиотиков. Метод культур тканей, клеток животных и человека широко применяется в научных исследованиях, особенно - вирусологических, а также в биологической промышленности для изготовления диагностических, профилактических препаратов. Культуральный метод (бактериологический, бакпосев) - это "золотой стандарт" диагностики многих инфекций и основной метод контроля эффективности лечения. Он гораздо чувствительнее и специфичнее обычного мазка и имеет преимущества перед ДНК-диагностикой. Дело в том, что важно не обнаружение микроба, а доказательство того, что именно он является возбудителем инфекции, а это не одно и то же. В организме часто присутствуют микроорганизмы, "условные патогены" (например, гарднереллы), которые в норме не вызывают болезни, а при снижении иммунитета, могут вызывать развитии дисбактериоза. Их обнаружение не доказывает их роли в развитии инфекции. А вот их рост на питательных средах говорит о том, что они, во-первых, жизнеспособны (могут вырасти и вызвать болезнь), во-вторых, многочисленны (отдельные микроорганизмы подавляются теми, кого больше, и тогда на среде вырастает не возбудитель
инфекции, а нормальная флора. Что представляют собой тканевые культуры. Тканевые культуры давно нашли применение для ре­шения различных вопросов биологии и медицины. Од­нако лишь успехи в области вирусологии, достигнутые с помощью тканевых культур, явились мощным стиму­лом их развития до современного уровня. Большая заслуга в деле paзработки методов куль­тивирования тканей принадлежит Каррелю Он впервые доказал возможность размножения клеток жи­вотных в искусственных условиях и тем самым проде­монстрировал их "бессмертность" и сходство с одноклеточными свободноживущими организмами. Значительных успехов в этом направлении достигла группа иссле­дователей под руководством Эрла. Они первые получи­ли рост большого числа клеток на стекле и в жидкой пе­ремешиваемой суспензии. Появление антибиотиков и ус­пехи в создании искусственных питательных сред открыли новую эру в развитии методов тканевых культур. Первые попытки культивирования клеток животных вне организма относятся к концу прошлого столетия. Эти отрывочные наблюдения указывали на возможность сохранения жизнеспособности тканей и клеток в искус­ственных условиях и положили начало глубоким науч­ным исследованиям тканевых культур. Культуры клеток представляют наиболее удобную систему для количественного накопления вирусов. Культивирование вирусов помогает решить ряд теоретически проблем, связанных с изучением особенностей взаимодействия "вирус-клетка". Кроме того решение целого ряда прикладных задач, связанных с диагностикой и производством препаратов для профилактики вирусных инфекций невозможно без накопления вируссодержащего сырья. Живущие вне организма клетки или ткани характеризуются целым комплексом метаболических, морфологических и гене­тических процессов, резко отличающихся от свойств клеток органов и тка­ней invivo. Способность перевиваемых клеток к бесконечному размножению invitro знаменует собой качественный скачок, в результате которого клетки приобре­тают способность к автономному существованию, подобно мик­роорганизмам, выращиваемым на искусственных питательных средах. Совокупность изменений, приводящих к появлению у клеток таких особенностей, называют трансформацией, а клетки перевиваемых тканевых культур -- трансформированными. Другим источником перевиваемых клеточных линий являются злокачественные новообразования. В этом случае трансформа­ция клеток происходит invivo в результате развития патологи­ческого процесса, этиология которого во многом остается еще невыясненной. Не все злокачественные новообразования способны давать начало перевиваемым клеточным культурам. Так, например, безуспешными были попытки получить перевиваемые клетки из раковых опухолей желудка и молочных желез человека. С тру­дом удается адаптировать к жизни invitro клетки плоскокле­точного рака кожи и слизистых оболочек. С другой стороны, сравни­тельно легко выводятся линии из тканей сарком и злокачест­венных опухолей нервной системы. Выращивание вирусов в культурах клеток. В настоящее время для выделения и размножения вирусов животных используются первичные культуры, штаммы клеток и установившиеся клеточные линии. В общих чертах процедура оказывается одинаковой для всех вирусов. Заражение вирусами культивируемых клеток вызывает ха­рактерные морфологические изменения клеток. Конечные деге­неративные клеточные процессы (цитопатогенный эффект) обнаруживаются только через несколько недель роста в присутствии вирусов, но в ряде случаев цитопатогенный эффект обнаруживается уже через 12 ч. Детали морфологических изменений оказыва­ются различными в случае разных вирусов. Если вместо продуктивной инфекции вирус вызывает кле­точную трансформацию, то это также сопровождается харак­терными изменениями морфологии и особенностей роста кле­ток. Вирусы оказывают цитопатогенное действие и служат этиоло­гическими агентами при многих заболеваниях человека и жи­вотных. Кроме того, многие вирусы (например, онкорнавирусы, вирус герпеса тип II, аденовирусы, вирус полиомы и SV40) яв­ляются, по-видимому, агентами, вызывающими развитие опу­холей у животных и человека. Из-за способности вирусов проходить через бактериальные фильтры бывает трудно исключить вирусы из культур незараженных клеток при наличии вирусных суспен­зий, когда возможна передача вируса через воздух культуральной комнаты. Это то, что часто встречается при производстве вакцин на биофабриках. Поэтому многие биовакцины содержат кучу хлама и совершенно неконтролируемых постороннних включений. Общие меры предосторожности применимы только в тех случаях, когда вирусы не представляют какой-либо особой опасности. При использовании особо опасных вирусов, представляющих опасность для здоровья людей и животных окружающего мира, сле­дует применять дополнительные меры предосторожности. К вирусам, представляющим особую опасность, относятся вирусы ньюкаслской болезни, вирусы ящура, вирусы везикулярного стоматита, вирусы оспы, вирусы бешенства, ви­русы герпеса типа В, бактерии сибирской язвы и тд. Кроме того, нельзя быть уве­ренным, что даже такие вирусы, как полиомиелита, коклюша, ветряной оспы и др, не представляют опасности для новорожденных и грудных детей. Итак, уверен, что вы уяснили как выращиваются вирусы, на каких средах это происходит, что поддерживающих и обеспечивает их активность, метаболизм и рост. Многие патогены живут в анаэробных (бескислородных) условиях, и погибают в присутствии кислорода. Соответственно, у тех, кто ведет правильный и активный образ жизни, в ткани поступает больше кислорода и патогены не могут там развиваться. Это именно то, что мы называем "почвой", столь важной для нашего здоровья. "Всё зависит от условий", - признал Пастер на смертном одре. На сегодняшний момент в вакцинах много мутагенов, грязи и ядовитых компонентов, которые мы никогда не ввели бы сознательно в наш организм. Здравый смысл - не допускать в организм введение патогенных микроорганизмов, выросших на ядовитых животных тканях. Яды животного происхождения. Вакцины являются биологическими агентами, созданными из генетическимодифицированного биоматериала людей и животных. Эти яды вводятся детям ошибочно или специально вводя в заблуждение родителей о том, что увеличение количества антител против одной или нескольких болезней ыработает напряжённый искуственный иммунитет. По природе яды классифицируются на имеющие растительное и животное происхождение. Какие же из них наиболее опасны с точки зрения развития отравлений. Баттелевский институт (США), например, в списке сильнодействующих ядов на первое место ставит соединения тяжелых металлов. Некоторые авторы на первое место помещают пестициды. Другие считают, что эти соединения делят два первых места с тяжелыми металлами. Яды могут быть 1) экзогенного характера: техногенные химические вещества, агрохимикаты, лекарственные вещества, недоброкачественные продукты питания; 2) эндогенного, например, вырабатываемые самим организмом при нарушении обмена веществ, при ненормальной функции отдельных органов и систем (к ним же относятся яды эндокринного характера). Различают яды местного и общего действия. Яды с общим (резорбтивным) действием делятся по принципу преимущественного влияния на какой-либо орган (сердце, почки, мышцы) или систему (кровеносную, нервную и тд.). Яды местного действия, например, едкие щелочи и кислоты в больших дозах и концентрациях, помимо местного действия, влияют на состояние всего организма. После такого рода отравлений может наступать полное выздоровление, но иногда остаются изменения, которые приводят к нарушению функций организма, поражению отдельных органов. Все знают, сколь опасна для человека ртуть. Вместе с тем, ее препаратами в свое время успешно лечили сифилис и ряд других заболеваний, особенно кожных. Отравлением называется заболевание, выражающееся в расстройстве функций организма, вызванное попаданием чужеродного токсического вещества или патогена. При этом в организме возникает особое патологическое состояние, которое нужно понимать как определенную реакцию на действие чрезвычайных раздражителей. Следует иметь в виду и то чрезвычайно важное обстоятельство, что дети обладают низкой толерантностью к сильнодействующим препаратам, вследствие чего поступление последних в организм, в частности при передозировке, может приводить к развитию тяжелого отравления. Не удивительно, что среди состояний давно известных как отравление, все чаще встречаются заболевания, квалифицируемые как поствакцинальное осложнение или поствакцинальное отровление. Особенно опасны наличие такого состояния у грудных детей. К сожалению, на сегодняшний день имеется достаточно случаев отравления детей вследствие роковых ошибок производителей вакцинных препаратов. Межвидовые различия восприятия токсичночти. При изучении токсичности веществ, входящих в состав вакцин, на разных видах лабораторных животных, как правило всегда выявляются определенные различия. Для одних веществ, различия токсичности весьма существенны, для других - выражены слабо. Таблица 3. Токсичность (ЛД 50 мг/кг) некоторых веществ для животных различных видов

Вид Строфантин (подкожно) Гексахлор циклогексан (через рот) Диизопропил фторфосфат (в/в) Фторацетат натрия (через рот)
крысы мыши лягушки кролики морские свинки кошки собаки козы обезьяны лошади 50 - 100 8 - 13 0,4 - 1,0 0,1 - 0,4 0,1 - 0,3 0,15 - 0,2 0,1 - 0,15 - - - 75 - 88 86 - 60 127 - 50 - - - - 0,4 - - - - 3,4 0,8 0,25 - 6,9 - - - - - 0,07 - - 1,0

Летальная доза вещества (ЛД 50) - комплексная величина. На её значение оказывают влияние особенности резорбции, распределения, биотрансформации, выведения токсиканта, особенности взаимодействия с биомишенями и формирования токсического процесса. Каждый из упомянутых факторов в зависимости от вида животных может существенно влиять на токсичность вводимого препарата. Распределение. Часто одно и тоже вещество по-разному распределяется в организмах представителей различных видов животных и человека. Так, объем распределения пропранолола (в пересчете на 1 кг массы тела) у человека составляет 3,62, обезьян - 0,60, собаки - 1,71, крысы - 5,30, кошки - 1,57. Причинами таких различий являются особенности структуры белков крови, способности связывать токсиканты и патогены, кровоснабжения отдельных органов и тканей, развития и реакции иммунной системы, содержания жира в организме. Вследствие этого, не смотря на введение животным разных видов одинаковой дозы вещества, его содержание в органах-мишенях у этих животных будет различным. Заслуживает внимания такая характеристика, как диаметр пор гломерулярной мембраны. Так, у человека в почках через барьер не проникают молекулы с массой более 15000, у собаки - 4000, у крысы - 2000. Возрастные различия. В процессе индивидуального развития человека и животных выделяют эмбриональный, фетальный, неонатальный, перинатальный, а также периоды созревания, зрелого возраста и старости. Чувствительность организма к токсикантам в различные периоды жизни различна. Это обусловлено процессами развития, созревания и дифференциации тканей, возрастными особенностями морфологии, физиологии и биохимии органов и систем организма. В различные периоды развития и жизни организма подвергаются существенным изменениям: характер вазкуляризации тканей, проницаемости гистогематических и иных барьеров, функции нервной, эндокринной, иммунной систем и т.д. Вспомним из истории, применение вакцины против оспы, которые использовал Дженер, вводили группам риска - людям работающим с животными (дояркам). Нет информации указывающей на то, что в те времена повсеместно вакцинировали детей, кроме опыта с ребенком, который провел сам Дженер. Восновном вакцинации подвергались взрослые люди, сознательно идущие на это, чтобы избежать болезни. Ненадо забывать, что люди с оформившейся имунной системой легче переносят вакцинацию, так как дозы для них такие же как и для грудных детей. Представители различных видов животных по-разному, как в количественном, так и качественном отношении, реагируют на действие токсических веществ. Это позволяет создавать вещества с "избирательным" действием, т.е. такие, токсичность которых в отношении определенного вида во много раз превосходит токсичность для других видов. На этом принципе строится разработка многочисленные пестицидов, антибиотиков и т.д. Представители одного и того же вида также, порой, неодинаково чувствительны к токсикантам. Неодинаковая токсичность одного и того же соединения для различных организмов обусловлена как наследуемыми, так и приобретенными особенностями их морфо-функциональной организации, сказывающимися на токсикокинетике и токсикодинамике веществ. Генетически обусловленные особенности реакций организма на действие токсикантов. Информация, заключенная в молекулах хромосомной и экстрахромосомной ДНК определяет морфологические, физиологические и биохимические особенности каждой живой клетки, которые реализуются в ходе её развития и взаимодействия с окружающей средой. Дифференцировавшиеся клетки, принадлежащие к различным органам и системам, используют лишь часть генетической информации, заключенной в ДНК. Она то и определяет, каким образом каждая клетка будет реагировать на токсикант. Помимо генетических механизмов, чувствительность отдельного организма к токсиканту определяется взаимодействием внутренних факторов (гормональный фон, интенсивность обмена веществ и т.д.) и факторов внешней среды. Генетические особенности детсткого организма. Токсичность вакцин для различных групп детей колеблется в достаточно широких пределах. Эти колебания обусловлены внутривидовой изменчивостью. В основе изменчивости лежат генетические особенности организмов одного и того же вида проживающих на одной территории одного континента. Иногда генетические особенности детей и даже их семей выражены столь существенно, что это проявляется в их необычайно высокой чувствительности к тем или иным токсикантам, выходящей за рамки доверительного интервала изменчивости популяции. Выяснение причин таких особенностей явилось предметом наших теоретических и токсикогенетических исследований. Как правило повышенная чувствительность обусловлена мутацией генов, отвечающих за синтез некоторых энзимов, регуляторов биотрансформации к действию патогенов, рецепторных структур или транспортных белков. Выявляемые при этом аномалии могут иметь как моногенетическую, так и полигенетическую природу. До какого-то времени эти аномалии могут не проявляться фенотипически. Их манифестация происходит лишь при контакте организма с определенными токсикантами или аллергенами. В качестве примера можно привести дефекты связанные с глюкозо-6-фосфатдегидрогеназы или гемоглобином. Дети с подобными генетическими дефектами реагируют на патогены и содержащиеся соединения входящие в состав современных вакцин, бурным образованием метгемоглобина, гемолизом и яркими патологическими нарушениями как деятельности ЦНС, так других органов и систем. У некоторых детей реакция на введение патогена протекает с очень низкой скоростью и вызвывает не острое, а побочное хроническое действие затягивающееся на годы и десятилетия. Количество лиц с таким дефектом метаболизма и нарушением обмена веществ в Европе уже составляет около 50%. Биотрансформация. Видовые различия характеристик биотрансформации к действию патогенов по большей части носят количественный, реже качественный характер. Существует обратная связь между массой тела ребёнка и скоростью ферментативного превращения чужеродного соединения, поэтому прямой перенос данных по токсичности вещества, полученных на одном виде опытных животных в расчёте на детский организм чреват большой вероятностью ошибки. Мелкие лабораторные животные, как правило, менее чувствительны к токсикантам, чем животные с большей массой тела (таблица 2). Таблица 4. Чувствительность животных различных видов к гексобарбиталу (вводимые дозы -100 мг/кг; для собаки - 50 мг/кг).

Вид Время сна (мин) период полупревращения гексобарбитала (мин) Активность энзимов (мкг/г/час)
мыши кролики крысы собаки 12 49 95 315 19 60 139 261 598 294 134 36

Кошки являются исключением из этого правила. Они метаболизируют вещества чрезвычайно медленно. Многие лекарственные препараты, например, фенитоин, аминазин, дезипрамин, резерпин сохраняются в организме этих животных днями. Действие одной дозы резерпина продолжается в течение 3 недель. Детоксикация веществ входящих в состав вакцин в организме ребёнка протекает по-разному, причем процесс идет с иной скоростью, чем в организме приматов, не смотря на их эволюционную близость. Активность энзимов отдельных органов и тканей, участвующих в метаболизме чужеродных соединений у разных видов животных, как в отношении различных субстратов, так и отдельных реакций, варьирует в широких пределах (таблица 3). Таблица 5. Активность бензпирен-гидроксилазы (в условных единицах) и её чувствительность к индукции полициклическими углеводородами в органах лабораторных животных.

Животное Печень Почки Легкие Кишечник Кожа
Мышь   0,03 0,2 1,0 0,7
Обезьяна 2,5 0,4 0,2 0,1 0,02
Способность энзима к индукции          
Контроль (1,0) 1,5   3 - 10   4 - 11

(D. W. Nebert, H. V. Gelboin, 1969) Другими примерами видовых различий метаболизма веществ входящих в состав вакцин являются неодинаковое соотношение процессов биологического окисления и конъюгации, о чем было написано выше. Экскреция. Установлено, что видовые различия в чувствительности к веществам слабо метаболизируемым в организме могут быть обусловлены существенными различиями в скорости их выведения. Особенно это касается токсикантов удаляемых с помощью механизма активной секреции в мочу или желчь. Известно, что скорость экскреции существенно зависит от размеров выделяемой молекулы. У различных видов животных в сравнении с детьми грудного возраста, оптимальные значения молекулярной массы токсиканта, выделяемого через почки или печень неодинаковы. Действие токсикантов на организм малолетних детей с различным механизмом их метаболизма и экскреции будут различными. Защищая диссертацию на кафедре фармакологии и токсикологии в научно-исследовательском институте при Академии Наук Русской Федерации я никогда не думал, что уже через 6 лет мне придётся вступить в противоречия с самим собой, впервые сломать копившиеся десятилетиями стереотипы, доказывать именно самому себе очевидное. То очевидное, что я не был готов, как и многие другие, посмотреть на всю систему профилактической вакцинации с другой стороны. Прочитав гору литературы и взвесив все "за" и "против" я стал ярым противником вакцинации грудных детей. Это решение далось мне нелегко. А главное, после изучения процесса вакцинации я избавился от комплекса незнания и страха перед непознанным. Я и моя супруга взяли на себя ответственность за здоровье маленького ребёнка и ничуть об этом не жалеем, потому, что показатели физического развития нашего малыша далеко отличаются от общепринятых показателей для грудных и маленьких детей. Всем сомневающимся в моих выводах, в особенности бюрократам из здравоохранения и вакцинаторам, могу предложить "маленький" эксперимент - попробовать ввести себе вакцину против одной из детских болезней соответственно вашему весу. Каков будет ответа? Я думаю, это разумное предложение для всех сторонников вакцинации сначала пройти тест на себе а затем экспериментировать на новорожденных. Медицинский аспект охраны окружающей среды неразделимо связан с охраной внутренней среды человека. Согласно рекомендациям ВОЗ (отд. N 638, раздел А.3-3.): "По завершении процесса инактивации любой свободный инактивирующий агент должен быть удалён или нейтрализован... Метод очистки должен быть таким, чтобы исключить попадание в конечный продукт веществ, которые могут вызывать неблагоприятные реакции у человека". При таком количестве поствакцинальных осложнений, вдруг спустя пол века начинает доходить что то, что давно используемое в качесве биопрепаратов, включает в себя не только биовакцины, а и концерогенные антибактериальные химические вещества. И неизвестно чего больше, антигенов или химических веществ? В 1993 г., журнал "Vaccine" опубликовал статью, в которой признал, что "зараженные вирусами клеточные культуры представляют одну из самых больших проблем в биоиндустрии.... Клеточные культуры могут быть постоянно заражаемы вирусами, или стать ими зараженными, это обычно бывает следствием использования зараженной сыворотки". Некоторые поливакцины, аденовирусные вакцины, краснушная вакцина и вакцина против гепатита А производятся из тканей абортированных человеческих плодов. Я, как специалист по ветеринарной токсикологии считаю, что в современной ситуации безовсяких промедлений производителями вакцин должны быть представлены документы, доказывающие проведение специальных токсикологических исследований на отсутствие тератогенности, эмбриотоксичности, аллергизирующей активности, мутагенности и канцерогенности применяемых биопрепаратов для детей грудного и дошкольного возраста. Кроме того, любые химические добавки, используемые в качестве консервантов, стабилизаторов, наполнителей и тд, могут менять фармакокинетику основного вещества. В данном случае, белков-антигенов, ослабленных или убитых вирусов и бактерий, а следовательно и их целенаправленное действие. Отсутствие исследований и испытаний на животных в последние годы, подтверждающие безопасность тех количеств химических веществ, которые допущены к применению, говорит о том, что производители вакцин успокоились и забыли о своей ответственности. Неспецифическая токсичность биопрепаратов - один из вариантов определения безопасности. Почему же опускают этапы биологической экспертизы, а определение количества химических веществ осуществляют физико-химическими методами? Изучение безопасности биопрепаратов - это серьезное продолжительное испытание. Профилактические вакцины, применяемые детям, должны быть минимально реактогенны и высоко­эффективны, хорошо очищенными и состоять исключительно из биокомпонентов, во избежание дополнительной нагрузки на иммунную систему. Но, даже при строжайшем соблюдении таких условий вряд ли можно избежать поствакцинальных осложнений. Любое лекарственное средство обладает побочным действием и побочными эффектами. Подтвердить окончательное действие на животных, вакцины, содержащей консервант, современными методами не удается вследствие быстрой гибели тест-системы. В связи с этим высказывания относительно безопасности вакцины носят слишком оптимистический характер. Вообще, когда знакомишься с наставлениями по применению биологических вакцин, возникает ощущение сплошных противоречий, многие из которых вызывают удивление. Ничего не говорится, например, о токсикологии химических веществ допущенных в биопрепараты, о химическом взаимодействии консервантов между собой, а содержание их количества уже давно вызывает споры. Производители биопрепаратов добавляют в вакцину сильнодействующие иммуностимуляторы, такие как сквален, алюминий, липополисахариды и другие. Они называются иммунными адъювантами. Для выявления действия веществ на иммунную систему разработаны многочисленные методы исследования, выполняемые in vivo и in vitro. Иммунные клетки легко изолировать, а их функции изучить in vitro. Антитела также легко выделить и их количество оценить. Информация об иммунотоксичности веществ входящих в состав вакцин должна быть использована для оценки риска, которому подвергаются прививаемые дети. Формальдегид CH2O< (Formaldehyd) водный его раствор - формалин (Formalinum), входящий в состав многих инактивированных вакцин. Им проводится химическая инактивация (обезвреживание) используемых в вакцинах вирусов и бактерий. Физико- химические свойства: (Formaldehyd). Формалин, Formalinum. Прозрачная бесцветная жидкость со своеобразным острым запахом, смешивающаяся с водой и спиртом во всех соотношениях. Применяют как дезинфицирующее, дезодорирующее средство. Вызывает воспалительные заболевания кожи. Подавляет секрецию потовых желез, вызывает коагуляцию белков апикальной части клеток их концевых отделов и эпидермиса. Фармалин является известным канцерогеном - веществом, вызывающим рак. Доказано также, что он является одним из наиболее известных мутагенов, аллергенов, обладает эмбриотоксическим действием. Используется в сельском хозяйстве в качестве гермицида, фунгицида и инсектицида. Даже небольшое проникновение формальдегида в пищеварительный тракт живого организма вызывает симптомы тяжелого отравления: сильные боли в животе, рвоту кровью, появление белка и крови в моче, поражение почек. Результатом всего становится прекращение отделения мочи, ацидоз, головокружение, кома и смерть. То, что формальдегид неспособен выполнять возложенные на него функции инактивации, выяснилось еще в 1950-х годах, когда немало людей пострадало от вакцины Солка (см. о полиомиелите). Во взвеси, которую представляет собой вакцина, вирусы частично слипаются и покрываются белковым "мусором", прочность которого формалин в обычной своей концентрации только повышает. Попадая в организм, белковая оболочка разрушается ферментами, и вирусы выходят на свободу, начиная размножаться в теле "лжепривитого", приводя организм к болезни и даже к смерти. Никакого решения этой проблемы с тех пор найдено не было. Применение формальдегида (формалина) в свете его неэффективности в обезвреживании инфекционных агентов, его способности вызывать отравление организма - не имеет никакого оправдания! К аллергенным свойствам формалина относятся: отёк Квинке, крапивница, ринопатия (хронический насморк), астматические бронхиты, бронхиальная астма, аллергические гастриты, холециститы, колиты, эритемы, трещины кожи и др. - полная аналогия с теми поствакцинальными осложнениями, которые отмечают педиатры и другие специалисты
вот уже 40 лет после применения АКДС вакцины. Статистика же запрятана за железными дверями от широкой общественности. В литературе по токсикологии сказано: "Недопустимо введение под кожу, в/мышечно, парентерально веществ, обладающих раздражающим действием". Хорошо известное свойство "жжения" после инъекции АКДС и др. инактивированных вакцин, содержащих формалин. Тысячи детей страдают десятки лет от вакцинальной агрессии, но медицинским чиновникам до этого дела нет. Нежелание разрабатывать новые биотехнологии - отражает состояние дел производителей вакцин. Государство же, гарантируя качесто, навязывет эту мутагенную продукцию населению, обеспечивая производителям смертоносного оружия отличные доходы. На сегодняшний день данных, показывающих безопасность присутствия формальдегида в составе вакцин пока-что нет. Формальдегид официально назван канцерогеном. Международное агентство по исследованию рака, являющееся частью Всемирной Организации Здравоохранения, признало, что накоплено достаточно данных, чтобы утверждать, что это вещество может вызывать онкологические заболевания. Особенно важным в рассмотрении токсикологии фармальдегида является изучение метаболических процессов, в результате которых токсичное вещество превращается в яд отровляющий организм новорожденного. Это может осуществиться как в процессе разложения вещества, так и в процессе синтеза формальдегида в организме. Такое явление называется летальным синтезом. Ярким примером такого рода превращения -- является метаболизм формальдегида токсичность которого полностью определяется продуктами его окисления. Метаболизм формальдегида начинается с образования вещества которое на порядок токсичнее исходного продукта CH3CH2OH+HAD Алкогольдегидрогеназа? CH3CHO+HADH, Тяжесть отравления этиленгликолем прямо пропорциональна степени окисления его до щавелевой кислоты. В процессе метаболизма формальдегид оказывает токсическое действие на кроветворение, вызывая депрессию гемопоэза, характеризующуюся угнетением красного и белого ростков крови, и провоцируют развитие анемического синдромокомплекса. Формальдегид обладает сенсибилизирующим действием на организм. Исследования специфических лабораторных показателей свидетельствует о процессах образования в организме антитоксина к самому формальдегиду и подтверждает вероятность сенсибилизации у детей к указанным токсикантам. Доказано, что исследуемые компоненты токсикантной нагрузки обладают выраженным раздражающим действием на дыхательные пути, вызывают нарушение тканевого дыхания, дестабилизируют систему "активность окислительных процессов - антиоксидантная защита", обуславливающую ранние нарушения неспецифической защиты организма, в том числе иммуносупрессию, углубление которых формирует специфический патологический процесс. Формальдегид окисляется в муравьиную кислоту в эритроцитах и печени. Затем происходит расщепление до углекислого газа и воды. Муравьиная кислота является основным токсическим продуктом метаболизма формальдегида, она особенно вредна для сетчатки глаз. При рассмотрении метаболизма формальдегида необходимо учитывать, что в организме он может превращаться в метанол и муравьиную кислоту. Метанол (древесный спирт), очень токсичен. Прием внутрь небольшого количества метанола может привести к смерти. Такая необычно высокая токсичность метанола обусловлена действием не столько самого метанола, сколько про дукта его последущего метаболизма - формальдегида. Метанол быстро окисляется д о формальдегида под действием фермен та печени алкогольдегидрогеназы. Отравление протекает двухфазно: фаза наркоза и фаза вторичной комы. Наркотический эффект объясняется действием целой молекулы метанола на ЦНС, а вторичная кома результат действия продуктов его метаболизма. В клинике отравления различают 3 периода: - период наркоза (30-90 мин); - период мнимого благополучия (от нескольких часов до 2-4 суток) накопление продуктов распада метилового спирта; продолжительность его не влияет на характер исходов. - период выраженных симптомов отравления. С начала третьего периода появляется тошнота, рвота, расстройство зрения ("мушки" перед глазами, неясность видения) вплоть до полной слепоты (результат накопления в сетчатке глаза формальдегида). При легком отравлении отмечается быстрая утомляемость, головная боль, тошнота. При среднетяжелом отравлении наблюдается сильная головная боль, головокружение, тошнота, рвота, угнетение ЦНС, расстройство зрения через 2-6 дней. При тяжелом отравлении после вышеописанных симптомов присоединяются токсическая энцефалопатия, токсический гепатит и токсическая нефропатия с исходом в острую почечно-печеночную недостаточность. Часто коллапс с цианозом. Смерть от паралича дыхания и острой сердечно-сосудистой недостаточности. Спектр проявлений токсического процесса, определяется строением токсиканта. А выраженность развивающегося токсического эффекта представлено количеством действующего патологического агента. Для обозначения количества вещества, действующего на биологический объект, используют понятие - доза. Например, введение в желудок крысе весом 250 г и кролику весом 2000 г токсиканта в количестве 500 мг, означает, что животным введены дозы равные соответственно 2 и 0,25 мг/кг. Зависимость "доза-эффект" может быть прослежена на всех уровнях организации живой материи: от молекулярного до популяционного. При этом в подавляющем большинстве случаев будет регистрироваться общая закономерность: с увеличением дозы - увеличивается степень повреждения общей системы. В процесс вовлекается все большее число составляющих её элементов. В зависимости от действующей дозы практически всякое вещество в определенных условиях может оказаться вредным для организма. Это справедливо для токсикантов, действующих как местно (таблица 4), так и после резорбции во внутренние среды (таблица 5). Таблица 6. Зависимость между концентрацией формальдегида во вдыхаемом воздухе и выраженностью токсического процесса.

Концентрация (см 33 - ppm) Клинические проявления
0,01 - 0,05 Раздражение глаз
0,05 - 1,00 Непереносимый запах
0,05 - 3,00 Раздражение верхних дыхательных путей
3,00 - 10,00 Сильное раздражение слизистой дыхательных путей
10,00 - 30,00 Раздражение глубоких дыхательных путей
50,00 - 100,00 Воспалительный процесс в легких; токсический отек

(P.M. Misiak, J.N. Miceli, 1986) Таблица 7. Зависимость между концентрацией этанола в крови и выраженностью токсического процесса

Концентрация мг/100 мл Клинические проявления
20 - 99 Изменение настроения; прогрессирующее нарушение координации движений, сенсорных функций; изменение поведения
100 - 199 Выраженные нарушения мышления; увеличение времени реакции на внешние раздражители; атаксия
200 - 299 Тошнота; рвота; выраженная атаксия
300 - 399 Гипотермия; дизартрия; амнезия; 1 стадия анестезии
400 - 700 Кома; угнетение дыхания; смерть

(T.G. Tong, D. Pharm, 1982) На проявление зависимости "доза-эффект" оказывает существенное влияние внутри- и межвидовая изменчивость организмов. Действительно, особи, относящиеся к одному и тому же виду, существенно отличаются друг от друга по биохимическим, физиологическим, морфологическим характеристикам. Эти отличия в большинстве случаев обусловлены их генетическими особенностями. Еще более выражены, в силу тех же генетических особенностей, межвидовые различия. В этой связи дозы конкретного вещества, в которых оно вызывает повреждение организмов одного и того же и, тем более, разных видов, порой очень существенно различаются. Следовательно, зависимость "доза-эффект" отражает свойства не только токсиканта, но и организма, на который он действует. На практике это означает, что количественную оценку токсичности, основанную на изучении зависимости "доза-эффект", следует проводить в эксперименте на различных биологических объектах, и обязательно прибегать к статистическим методам обработки получаемых данных. Зависимость "доза-эффект" на уровне отдельных клеток и органов. Самым простым объектом, необходимым для регистрации биологического действия токсиканта, является клетка. При изучении механизмов токсического действия вакцин и их составляющих - это положение не редко опускается, концентрируя внимание на оценке характеристик взаимодействии химического вещества с молекулами-мишенями. Такой упрощенческий подход, оправданный на начальных этапах работы, совершенно не допустим при переходе к изучению основной закономерности токсикологии - зависимости "доза-эффект". Необходимо досконально изучить количественные и качественные характеристики реакции всего эффекторного аппарата биообъекта на возрастающие дозы токсиканта, и сопоставить их с закономерностями действия на молекулярном уровне. Очевидно, всвязи с такими свойствами формалина во всех публикациях ВОЗ по изготовлению и контролю вакцин рекомендовано "нейтрализовать остаточные количества этого инактиватора". Кто и как этим занимается? Как говориться в заявлении, сделанном экспертами организации, доказана связь формальдегида, применяющегося в производстве смол, пластиков, красок, текстиля, в качестве дезинфицирующего и консервирующего средства, с повышенным риском развития раковых опухолей. Есть данные о том, что это вещество может приводить к лейкозам. Фенол - высокотоксичное вещество, получаемое из каменноугольного дегтя. Способен вызывать шок, слабость, конвульсии, поражение почек, сердечную недостаточность, смерть. Фенол является известным протоплазматическим ядом, он токсичен для всех без исключения клеток организма. Фенол подавляет фагоцитоз и соответственно первичный иммунный ответ. Фенол ( С6Н5OH ). Из школьной программы известно, что фенолы - вещества, у которых гидроксил находится непосредственно у бензольного кольца. В зависимости от числа ОН-групп различают одноатомные и многоатомные. Простейшим представителем фенолов является гидроксибензол С6Н5ОН. Физико-химические свойства: Белый кристаллический порошок с характерным специфическим запахом. Нерастворим в воде. Растворим в бензоле, метилэтилкетоне, четыреххлористом углероде. Температура плавления, 43°С, кипения 180°С, d 4 20 - 1,05(43°). Фенол является пожароопасным, ядовитым и токсичным продуктом, требующим особых мер предосторожности. При попадании на кожу или вовнутрь вызывает сильные ожоги. Фенол используют для получения синтетического волокна капролактама, медицинских препаратов, антисептиков, красителей, пестицидов, полимеров, моющих средств, фенолформальдегидных смол. Успешно применяется при производстве гербицидов, эпоксидных и поликарбонатных полимеров, салициловой кислоты, дезинфицирующих средств, фармацевтических препаратов. Таким образом, вакцины в состав которых входит фенол, на самом деле не усиливают, а разрушают иммунитет, причем, самое важное его звено - клеточное. Вакцины, с одной стороны, "вбрасывают" в организм патогены, а с другой - своими токсическими составляющими лишают организм возможности против них же обороняться. Исследования, которые могли бы продемонстрировать безопасность введения фенола и безопасность его аккумуляции в детском организме, никогда не проводились. em>Алюминий и его соли очень широко распространены в природе и на службе человека. Контакт с этим элементом неизбежен. Алюминий неспособен проникать через барьеры, образованные кожей, эпителием желудочно-кишечного тракта и легкими. Большинство солей алюминия почти нерастворимо в водных растворах. Однако, при особых условиях, возможна интоксикация встречающаяся у новорожденных, после применения вакцин содержащих в своем составе гидроокись алюминия. Возможно, что уже кто-то изучал безопасность введения солей алюминия в составе вакцин в организм детей, но данные этих исследований засекречены. Я же постараюсь привести свои данные, которые упел собрать в процессе изучения и обобщения предлагаемого материала. Соли алюминия применяются в вакцинах в качестве адъювантов -веществ, якобы усиливающих и продлевающих иммунный ответ на введение антигенов. Предполагается, что именно наличие солей алюминия ответственно за развитие 5-10% местных реакций на введение вакцин, а остающиеся свыше шести недель подкожные узелки в месте инъекции указывают на развитие сенсибилизации к алюминию. При этом подкожные узелки и сильный зуд могут продолжаться годами, фактически превращая ребенка в хронически больного. Осложнения, после применеия вакцин с годроокисью алюминия и сенсибилизация к нему, могут стать причиной системных хронических миалгий, поддающихся лечению с большим трудом и потенциально опасных развитием рассеянного склероза. Гидроокись алюминия тоже называют адъювантом. Здесь следует подчеркнуть, что уже многие десятилетия не рекомендуется использовать этот адъювант для вакцинации детей. Известная всем АКДС вакцина и все ее модификации сорбированы на гидроокиси алюминия. Адъюванты вследствие длительного раздражения, могут привести к повреждению тканей и чрезмерной стимуляции иммунной системы. Возможно, развитие опухоли вследствие длительного "раздражающего" действия. Ввиду сложности получения алюминиевых адьювантов с одинаковыми физико-химическими свойствами, колебания в активности между различными сериями одних и тех же вакцин непредсказуемы. К тому же, наличие гидроокиси алюминия не допускает контролирования вакцины по физическим свойствам, что может привести к необнаружению макропророста микробными колониями и введению в организм ребёнка значительного количества микробных клеток. В иммунологии - адъювант - это вещество, повышающее иммуногенность антител. В фармакологии - адъювант - вспомогательное средство при приготовлении лекарственной формы. Что касается онкологии, то здесь термин "адъювант" можно заменить синонимом - "синергист". Адъювантное лечение - дополнительное, вспомогательное, применяемое после основного лечения. Есть информация о том, что были проведены исследования различных технологий приготовления адьювант-вакцин, предназначенных для стимуляции иммунной реакции. Многие из предпринятых попыток оказались неудачными, так как разработанные адьювант-вакцины вызывали после вакцинации недопустимую отрицательную реакцию. Исследования показывают, что даже непродолжительный контакт солей алюминия с тканью мозга приводит к невозможности полноценного обучения. Это было доказ ано в экспериментах на животных. При этом было подтверждено и то, что вводимый с вакцинами адьювант попадает в мозг и по меньшей мере, временно остается там. Он нарушает мозговую деятельность и снижает развитие мозга у младенцев, тормозит развитие гипофиза и выработку жизненноважных гормонов роста. Выраженные клинические симптомы при попадании гидроокиси алюминия в детский организм нарушается метаболизм витамина Д стимулирующего всасывание кальция и фосфора в кишечнике и способствующего минерализации костей, вызывает развитие рахита у детей. Адьювант препятствуюет образованию активных форм витамина Д с нарушением фосфорно-кальциевого обмена. Развивается остеомаляция и остеопоро







Дата добавления: 2015-10-12; просмотров: 337. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия