Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Кафедра истории и





I.

1) m - чёт.: cos x = t

n - нечёт.: sin2x = 1- cos2x

2) m - нечёт.: cos2x = 1- sin2x

n - чёт.: sin x = t

3) m - чёт.:

 
 


n - чёт.:

 

4) m - нечёт.: cos2x = 1- sin2x

n - нечёт.: sin x = t

II. ;

Обязательно отделяется tg2x или ctg2x:

III.

Действует унив-ная триг-кая подстановка:

; ;

 
 


x = 2arctg t;

 

IV. ; ;

sinα*cosβ=1/2(sin(α+β)-sin(α-β))

cosα*cosβ=1/2(cos(α-β)+cos (α+β))

sinα*sinβ=1/2(cos(α-β)-cos(α+β))

 

Пределы:

I. Неопределённость :

1) если степени чис-ля и зн-ля равны, то предел

равен отношению коэфицентов при степенях.

2) если степень чис-ля > зн-ля, то предел = ∞.

3) если степень зн-ля > чис-ля, то предел = 0.

II. Неопределённость :

Необходимо чис-ль и зн-ль разложить на

множ-ли, при этом должно присутствовать

выражение x-a (а-число, к которому стрем-ся х).

 
 


1-ый замечательный предел:

 

 
 


2-ой замечательный предел:

 

Достаточные признаки сходимости числовых рядов:

1) 1 признак сравнения: Пусть даны два ряда Un и Vn, причем эл-ты 1 не превосходят эл-тов 2, тогда:

Если ряд 2 сход-ся, то и ряд 1 сход-ся

Если ряд 1 расход-ся, то и ряд 2 расход-ся

2) 2 признак сравнения: Если для рядов Un и Vn сущ-ет предел , то ряды одновременно сход-ся или расход-ся

 

3) признак Даламбера: Если сущ-ет предел

то, если D>1- ряд расх-ся; D<1 - ряд сходится;

D=1 -?

 

4) радикальный признак Коши: Если сущ-ет предел


k>1 - ряд расх-ся; k<1 - ряд сход-ся; k=1 -?

 

5) интегральный признак Коши: Пусть дан ряд Un, в котором U1≥U2≥…≥Un…., тогда ряд сход-ся, если в рез-те решения данного интеграла получ-ся число и расх-ся, если получ-ся ∞.

 

Основные виды сходящихся и расходящихся рядов:

1) геометрический ряд:

|q|<1- ряд сход-ся

|q|≥1- ряд расход-ся

 

2) гармонический ряд:

 
 


- ряд расход-ся

 

 

3) обобщённый геометрический ряд:

α>1- ряд сход-ся

α≤1- ряд расход-ся

 

Кафедра истории и







Дата добавления: 2015-10-15; просмотров: 348. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия