Студопедія
рос | укр

Головна сторінка Випадкова сторінка


КАТЕГОРІЇ:

АвтомобіліБіологіяБудівництвоВідпочинок і туризмГеографіяДім і садЕкологіяЕкономікаЕлектронікаІноземні мовиІнформатикаІншеІсторіяКультураЛітератураМатематикаМедицинаМеталлургіяМеханікаОсвітаОхорона праціПедагогікаПолітикаПравоПсихологіяРелігіяСоціологіяСпортФізикаФілософіяФінансиХімія






Початок людської цивілізації на території України. Характеристика періодів давньої історії.


Дата добавления: 2015-08-31; просмотров: 742



 

Если оси вращения поверхностей вращения совпадают, то такие поверхности называются соосными. На рис. 21 показаны чертёжи соосных конуса и эллипсоида вращения. Соосные поверхности пересекаются между собой по окружностям, фронтальная проекция которых вырождается в отрезок прямой, так как ось вращения параллельна фронтальной плоскости проекций. За ось вращения сферы может быть принята любая прямая, проходящая через её центр, т.е. любой её диаметр. Поэтому если центр сферы расположен на оси вращения поверхности вращения, то эта поверхность и сфера пересекаются по окружности или большему числу окружностям (рис. 22).

 

Рис. 21 Рис. 22

Пример 4. При пересечении двух поверхностей вращения, оси которых пересекаются, в качестве посредников целесообразно рассматривать концентрические сферы. Это возможно, если оси вращения поверхностей параллельны плоскости проекций. Центром сфер-посредников выбирается точка пересечения осей вращения поверхностей.

 

Рассмотрим пример пересечения двух поверхностей вращения - конуса и цилиндра (рис.23). Оси вращения данных поверхностей пересекаются в точке О и параллельны фронтальной плоскости проекций. Определим фронтальную проекцию линии пересечения, не используя горизонтальной проекции поверхностей. Первые четыре точки искомой линии – это точки пересечения очерковых образующих поверхностей – 1I, 2I, 3I, 4I. Примем точку О за центр концентрических сфер. Определим минимальное и максимальное значение радиусов сфер-посредников. Сфера с минимальным значением радиуса должна

Рис. 23 касаться одной поверхности и пересекать другую. Радиусы сфер, вписанных в конус и цилиндр, – это длина перпендикуляров, опущенных из точки ОI к очерковым образующим поверхностей - ОIА и ОIВ. Минимальное значение радиуса – это длина отрезка ОIА. Сфера с этим радиусом касается поверхности конуса и пересекает цилиндр по двум параллелям. Между собой проекции окружностей пересекаются в точках 8I, 9I. Максимальное значение радиуса сферы- посредника – это большее расстояние от центра ОI до очерковых точек 1I, 2I, 3I, 4I. Максимальное значение радиуса в данной задаче – это длина отрезка ОI1I.

 

Выбираем сферу-посредник с промежуточным значением радиуса R1, т.е. проводим окружность с центром ОI и радиусом, значение которого меньше максимального значения и больше минимального значения радиусов. Соединяем прямыми линиями соответствующие точки пересечения окружности с очерковыми образующими конуса и цилиндра – это проекции параллелей - линий пересечения сферы с данными

Рис. 24 поверхностями. Между собой отрезки пересекаются в точках 5I ,6I, 7I. Продлевая отрезки прямых, находим точку их пересечения 71I. Эта точка не принадлежит линии пересечения, но уточняет фронтальную ее проекцию (рис. 24).

Мы можем найти любое количество точек линии пересечения, изменяя значение радиуса сферы-посредника. С помощью сферы радиусом R2 мы нашли точку 10I и уточняющую точку 101I. Определив фронтальную проекцию линии пересечения, находим ее горизонтальную проекцию. Для этого строим горизонтальные проекции параллелей конуса, которым принадлежат найденные точки пересечения. Определяем характерные точки – точки, принадлежащие очерковым образующим цилиндра. Их фронтальные проекции – это точки пересечения проекции оси вращения цилиндра с линией пересечения – 11I и 12I (рис. 25).  
Рис. 25  

 

Рассмотрим пример 5 – пересечение открытого тора и конуса вращения. Ось вращения тора перпендикулярна, а ось вращения конуса параллельна фронтальной плоскости проекция. Оси вращения поверхностей перпендикулярны между собой. Посредники в данной задаче эксцентрические сферы, которые пересекают конус и тор по окружностям. Центры сфер, пересекающих тор по окружностям-образующим лежат на прямой, перпендикулярной проекции окружности и проходящей через ее середину (рис. 26).

Определим фронтальную проекцию линии пересечения (рис. 27).

Обозначим точки пересечения очерков поверхностей – точки 1I, 2I, 3I. Проекцию точек 4 и 41 определили, достроив окружности и найдя точки их пересечения.Выбираем на поверхности тора окружность, проекция которой отрезок аI аI. Проводим через середину отрезка перпендикуляр до пересечения с осью конуса. Точка пересечения О1I – это центр сферы, которая пересекает тор по окружностям аI аI и bIbI, а конус по окружностям сI сI и dI dI. Между собой проекции окружностей пересекаются в точках 5I и 8I.

Рис. 26


Рис. 27

Выбираем следующую окружность eIeI на поверхности тора, определяем центр О2I сферы-посредника. Найдя линии пересечения с поверхностью конуса, обозначаем точки 6I и 9I. С помощью третьей сферы находим точки 7I и 10I. Определив достаточное количество точек пересечения, соединяем их плавной кривой линией (рис. 28). Находим горизонтальную проекцию линии пересечения по принадлежности линии поверхности конуса.

 

Рис 28

 

ЛИТЕРАТУРА:

1. Тимрот Е.С. Начертательная геометрия : Учебное пособие для архитектурных вузов. – М.: Государственное изд-во литературы по стр-ву, арх-ре и строительным материалам, 1962 - 280 с.

2. Добряков А.И. Курс начертательной геометрии : Учебное пособие для строительных и архитектурных вузов. – М., Ленинград: Государственное изд-во литературы по с тр-ву и арх-ре, 1952 - 296 с.

3. Кузнецов Н.С. Начертательная геометрия : Учебник для строительных вузов и факультетов. – М: Изд-во «Высшая школа», 1969 -501 с.

4. Короев Ю.И. Начертательная геометрия: Учебник для вузов. – 2-е изд., перераб. и доп. – М.: Архитектура-С, 2007 – 424 с.

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ ДЛЯ СТУДЕНТОВ И ПРЕПОДАВАТЕЛЕЙ

Брянск 2011


Учебно-методическое пособие разработано с учетом требований к освоению программ учебных дисциплин государственного образовательного стандарта высшего профессионального образования по специальностям «Государственное и муниципальное управление», «Менеджмент организации», «Финансы и кредит», «Юриспруденция» и рекомендовано к печати кафедрой политологии, государственного и муниципального управления филиала ОРАГС в г. Брянске для использования в образовательном процессе.

Авторы-составители:

Ковшуро О.Д.,кандидат психологических наук, доцент кафедры социально-гуманитарных дисциплин

Нестерова Н.В.,кандидат исторических наук, старший преподаватель кафедры конституционного и муниципального права

Рецензенты:

Болховитина Т.С.,заведующая кафедрой политологии, государственного и муниципального управления, кандидат политических наук, доцент, директор Брянского филиала ОРАГС

Шачнев С.А.кандидат культурологии, доцент кафедры социально-гуманитарных дисциплин, заместитель директора по учебно-воспитательной работе Брянского филиала ОРАГС

Методические рекомендации по подготовке и оформлению письменных работ:Учебно-методическое пособие для студентов и преподавателей / О.Д. Ковшуро, Н.В. Нестерова, Брянск: БФ ОРАГС, 2010. - 64 с.


<== предыдущая лекция | следующая лекция ==>
Звукоізолювальні матеріали | ДОРОШЕНКО
<== 1 ==> | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
Studopedia.info - Студопедия - 2014-2024 год . (0.217 сек.) російська версія | українська версія

Генерация страницы за: 0.217 сек.
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7