Структуризация методов исследования систем управления
Эффективность исследования систем управления во многом определяется выбранными и использованными методами исследования. Методы исследования представляют собой способы, приемы проведения исследований. Их грамотное применение способствует получению достоверных и полных результатов исследования возникших в организации проблем. Выбор методов исследования, интеграция различных методов при проведении исследования определяется знаниями, опытом и интуицией специалистов, проводящих исследования. Всю совокупность методов исследования можно разбить на три большие группы: методы, основанные на использовании знаний и интуиции специалистов; методы формализованного представления систем управления (методы формального моделирования исследуемых процессов) и комплексированные методы. Первая группа — методы, основанные на выявлении и обобщении мнений опытных специалистов- экспертов, использовании их опыта и нетрадиционных подходов к анализу деятельности организации включают: метод «мозговой атаки», метод типа «сценариев», метод экспертных оценок (включая SWOT- анализ), метод типа «Дельфи», методы типа «дерева целей», «деловой игры», морфологические методы и ряд других методов. Вторая группа — методы формализованного представления систем управления, основанные на использовании математических, экономико-математических методов и моделей исследования систем управления. Среди них можно выделить следующие классы: аналитические (включают методы классической математики — интегральное исчисление, дифференциальное исчисление, методы поиска экстремумов функций, вариационное исчисление и другие, методы математического программирования, теории игр); статистические (включают теоретические разделы математики — математическую статистику, теорию вероятностей — и направления прикладной математики, использующие стохастические представления — теорию массового обслуживания, методы статистических испытаний, методы выдвижения и проверки статистических гипотез и другие методы статистического имитационного моделирования); теоретико-множественные, логические, лингвистические, семиотические представления (разделы дискретной математики, составляющие теоретическую основу разработки разного рода языков моделирования, автоматизации проектирования, информационно-поисковых языков); графические (включают теорию графов и разного рода графические представления информации типа диаграмм, графиков, гистограмм и т.п.). Наибольшее распространение в экономике в настоящее время получили математическое программирование и статистические методы. Правда, для представления статистических данных, для экстраполяции тенденций тех или иных экономических процессов всегда использовались графические представления (графики, диаграммы и т.п.) и элементы теории функций (например, теория производственных функций). Однако целенаправленное применение математики для постановки и анализа задач управления, принятия экономических решений разного рода (распределения работ и ресурсов, загрузки оборудования, организации перевозок и т.п.) началось с внедрения в экономику методов линейного и других видов математического программирования (работы Л. В. Канторовича, В. В. Новожилова, С.А. Соколицына и др.). Привлекательность этих методов для решения формализо- ванных задач, какими обычно являются названные выше и другие экономические задачи на начальном этапе их постановки, объясняется рядом особенностей, отличающих методы математического программирования от методов классической математики. При стремлении более адекватно отобразить проблемную ситуацию в ряде случаев целесообразно применять статистические методы, с помощью которых на основе выборочного исследования получают статистические закономерности и распространяют их на поведение системы в целом. Такой подход полезен при отображении таких ситуаций, как организация ремонта оборудования, определение степени его износа, настройка и испытание сложных приборов и устройств и т.д. Все более широкое применение находит статистическое имитационное моделирование экономических процессов и си- туаций принятия решений. В последнее время с развитием средств автоматизации возросло внимание к методам дискретной математики: знание математической логики, математической лингвистики, теории множеств помогает ускорить разработку алгоритмов, языков автоматизации проектирования сложных технических устройств и комплексов, языков моделирования ситуаций принятия решений в организационных системах. В настоящее время в экономике и организации производства применяются практически все группы методов формализованного представления систем. Для удобства их выбора в реальных условиях на базе математических направлений развиваются прикладные методы и предлагаются их классификации. К третьей группе относятся комплексированные методы: комбинаторика, ситуационное моделирование, топология, графосемиотика и др. Они сформировались путем интеграции экспертных и формализованных методов. Несколько в стороне стоят методы исследования информационных потоков. Схема структуризации методов приведена на рис. 4.1
Специалист по системному анализу должен понимать, что любая классификация условна. Она лишь средство, помогающее ориентироваться в огромном числе разнообразных методов и моделей. Поэтому разрабатывать классификацию нужно обязательно, но делать это следует с учетом конкретных условий, особенностей моделируемых систем (процессов принятия решений) и предпочтений, которым можно предложить выбрать классификацию.
|