Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основные свойства и характеристики информации





 

Для того чтобы иметь возможность использовать понятие информации при решении различных инже­нерно-психологических задач, нужно знать основные характеристики и свойства информации. Основными ее характеристиками являются количество, ценность, избыточность и достоверность. Количество информа­ции является важнейшей характеристикой информа­ции, используемой в инженерной психологии. Простой формальный аппарат для оценки количества информа­ции, содержащейся в сообщении, разработан в клас­сической теории информации (статистической теории связи).

При таком подходе количество информации опре­деляется величиной уменьшения энтропии (неопреде­ленности ситуации) после получения человеком каких-либо сведений. Величина энтропии рассчитывается по формуле

(2.2)

 

где Pi — вероятность i-того сигнала (нахождения сис­темы в i-том состоянии);

п — общее число различных сигналов (состояний системы).

В случае, если все сигналы равновероятны (Pi ), то энтропия при данном n достигает своего максималь­ного значения, равного

H = log2 n, (2.3)

При поступлении сообщения о каком-либо собы­тии энтропия системы уменьшается, причем это умень­шение и характеризует количество поступившей ин­формации

I = Н—Н0, (2.4)

где Н и Н0 — соответственно априорная (доопытная) и апостериорная (послеопытная, т. е. после получения сообщения) энтропия.

В том практически важном случае, когда после по­ступления сведений состояние системы стало полнос­тью определенным (а именно такой случай наиболее характерен для деятельности оператора), то количество информации численно равно априорной энтропии си­стемы, т. е. I = Н.

В формулах (2.2) и (2.3) логарифм может браться по любому основанию, но наиболее часто использу­ется основание, равное двум. При этом единица из­мерения количества информации носит название двоичной единицы информации (деи), или бита. Ин­формация в один бит будет иметь место в том случае, когда осуществляется выбор одного из двух равнове­роятных событий. Передача информации, равной од­ному биту позволяет уменьшить неопределенность ситуации вдвое.

Количество информации, перерабатываемое опе­ратором в единицу времени, называется скоростью переработки информации оператором, то есть VОП . Наибольшая скорость переработки информации чело­веком, рассматриваемом в качестве канала связи, т. е. канала передачи информации со средств ее отображе­ния к органам управления, называется пропускной способностью оператора. Ее величина в общем случае определяется формулой

 

(2.5)

где Н(х) — энтропия источника сообщений; Ну(х) — ус­ловная энтропия, характеризующая влияние шумов (помех) на передачу сообщений, она характеризует по­тери информации в процессе ее передачи; t — время передачи информации.

Любой канал связи, в том числе и систему перера­ботки и передачи информации оператором, можно представить в виде нескольких последовательных уча­стков передачи информации. Очевидно, пропускная способность канала в целом будет определяться про­пускной способностью того участка, для которого она минимальна. Подробнее этот вопрос рассматривается при изучении информационных характеристик зри­тельного анализатора.

Количество информации характеризует объем по­лученных человеком сведений, оно совершенно не зависит от свойств получателя сообщений и характе­ризует только одну сторону информации — структур­ную, статистическую. Однако кроме нее есть и праг­матическая сторона, которая всегда связана с целью деятельности человека и поэтому зависит от его инди­видуальных качеств. Эта сторона информации харак­теризуется таким понятием как ценность информации. Знание ценности информации позволяет рационально размещать датчики и измерительные приборы на ра­бочем месте оператора, сокращать общий объем инфор­мационного потока, разумно планировать очередность передачи сообщений оператору, назначая приоритеты согласно ценности, и т. п.

Ценность информации характеризует значение ин­формации для получателя. Для ее количественной оцен­ки разработано три основных подхода [цит. по 46, 77].

 

1. Ценность информации определяется по тому, на­сколько получаемое сообщение способствует дос­тижению цели. Количественно показатель ценно­сти определяется формулой

(2.6)

где Р0 и P1 и — соответственно вероятность достиже­ния цели до и после получения сообщения.

При таком подходе ценность информации, также как и ее количество, выражается в двоичных единицах (А.А.Харкевич).

 

2. Понятие ценности информации выводится из свя­зи теории информации с теорией оптимального уп­равления. Для этого рассматривается система слу­чайных величин х и система их оценки у. Средняя степень неопределенности существующих оценок определяется функцией штрафов f(x, у). Ценность же полученной информации находится по тому, на­сколько эта информация минимизирует функцию штрафов, т. е. делает оценки более определенными (Р.Л. Стратонович).

3. Ценность информации определяется исходя из того, насколько она снижает степень неопределен­ности (трудности) решаемой задачи. Если задача с п равновероятными исходами имеет начальную неопределенность HQ = log2 n, а после поступле­ния сообщения q относительно вероятности отве­тов Р ее неопределенность стала, то цен­ность информации равна H= ,

(2.7)

При таком подходе ценность информации опреде­ляется уже не по ее влиянию на статистическую нео­пределенность отдельных сообщений, а по тому, в ка­кой мере она снимает неопределенность самого метода решения. Здесь может учитываться и ложная информа­ция, повышающая неопределенность задачи (М.М. Бонград).

Рассмотренные методы определяют ценность ин­формации для человека исходя из ее значения для него. Осознание ценности информации человеком будет вызывать у него соответствующие эмоции. Поэтому приведенные показатели могут служить также косвен­ными мерами уровня эмоциональной реакции челове­ка на информацию.

Как уже отмечалось, наличие ложной информации снижает ее общую ценность. Поэтому важной харак­теристикой информации является ее достоверность» Под достоверностью информации понимается безоши­бочная (не искаженная) передача, переработка и хра­нение информации в системе при заданных условиях ее эксплуатации [214]. Качественно достоверность информации определяется как ее свойство на выходе системы соответствовать информации, поступившей на ее вход. Количественно достоверность информации оценивается такими показателями, как наработка на информационную ошибку, интенсивность информаци­онных ошибок, вероятность безошибочности информа­ции.

При расчетах этих показателях принимаются сле­дующие допущения:

■ информационные ошибки (искажения) в составных ком­понентах системы — события независимые, случайные;

■ поток информационных ошибок является простейшим;

■ появление информационный ошибки (искажения) в от­дельной компоненте системы приводит к появлению ошибки на выходе системы;

■ критерии появления (наличия) ошибок точно определены и их можно использовать для диагностики ошибок.

С учетом этих допущений в работе [214] предло­жены формулы для определения показателей достовер­ности информации. Наработка на информационную ошибку рассчитывается по формуле

(2.8)

где N — суммарная информационная наработка систе­мы в единицах обрабатываемой информации, элемен­тах (суммарная информационная нагрузка системы);

Nош — число возникших ошибок в системе (искаженных элементов информации) в рассматриваемой суммарной информационной нагрузке.

В некоторых случаях рассматривают также вре­менную наработку системы (с определенным быстро­действием) на информационную ошибку

где tи n(t) — соответственно суммарное время нара­ботки и возникшее за это время число информацион­ных ошибок.

Под интенсивностью ошибок (искажений) пони­мается отношение числа ошибок nош (t), возникших за некоторый интервал времени t, к произведению информационной нагрузки за этот же интервал на его длительность, то есть

(2.9)

Вероятностью безошибочности (не искаженности) информации называется вероятность того, что в опре­деленных условиях работы в пределах заданной инфор­мационной нагрузки (заданной продолжительности) ошибка (искажение) в информации не появится. Эта вероятность по статистическим данным находится по формуле

(2.10)

Основным методом повышения достоверности информации в информационных системах (как техни­ческих, так и в системе переработки информации че­ловеком) является применение помехоустойчивых ко­дов [14, 91]. Применение помехоустойчивых кодов связано с введением избыточности в исходную инфор­мацию.

Избыточность информации есть некоторая вели­чина r, которой измеряется относительная доля излиш­не используемых сообщений в некотором алфавите. Она определяется формулой

(2.11)

где Н — энтропщия сообщения, п — средняя длина кодового слова, М — число символов алфавита.

Естественным языкам свойственна значительная избыточность информации (например, для русского языка r = 0, 5...0, 8). Избыточность информации может быть естественной (например, естественные языки, изображения и т. п.) и искусственной. Последняя спе­циально вводится для улучшения помехоустойчивости, достоверности и надежности передачи и хранения информации [166]. В общем случае избыточность ин­формации оказывает двоякое влияние на характеристики информационных систем, в том числе и на про­цессы переработки информации человеком.

С одной стороны, избыточность информации су­щественно повышает ее помехоустойчивость, дает воз­можность восстановить искаженную информацию. На­пример, искажение или потеря отдельных букв, слов, а иногда и фраз позволяет правильно распознать смысл письменного или устного сообщения; искажение одно­го, двух сегментов знакосинтезирующих цифровых индикаторов позволяет в ряде случаев восстановить истинное значение отображаемой цифры и т. д. При­мером избыточности в информационных структурах мозга является парность некоторых анализаторов (зри­тельного, слухового), что повышает надежность их работы. Избыточную информацию не следует путать с иррелевантной, которая является помехой и мешает нормальной работе оператора. Существует три основ­ных способа введения избыточности: многократное повторение одной и той же информации; введение в сигналы дополнительных элементов; метод избыточных переменных.

С другой стороны, избыточность усложняет систе­му, увеличивает время обработки информации, снижа­ет реальную пропускную способность каналов связи. Поэтому определение необходимой избыточности ре­шается в каждом конкретном случае исходя из особен­ностей решаемой задачи и возможных ограничений. В случае необходимости для уменьшения избыточнос­ти применяют методы, разработанные в теории опти­мального кодирования, а также специальные методы сжатия информации.

Сжатием информации (сжатием данных) называ­ется представление информации (данных) меньшим числом битов по сравнению с первоначальным. Разли­чают сжатие информации без потери информации и с потерей некоторой ее части, несущественной для ре­шаемых задач. К первой группе относятся методы ко­дирования, использующие статистику потока сигналов для получения выигрыша в среднем, например, коди­рование короткими комбинациями символов более часто встречающихся элементов сообщения (код Мор­зе), Ко второй группе относятся методы, основанные на различных аппроксимациях данных, например, кодирование непрерывной кривой дискретными отсче­тами, основанное на теории Шеннона — Котельникова.

По способу устранения избыточности все методы сжатия информации делятся на три группы: 1) струк­турные, предусматривающие дискретное строение массивов информации и предполагающее их простей­шее кодирование; 2) статистические, определяемые понятием энтропии как меры неопределенности, учи­тывающий вероятности появления, а следовательно, и информативности тех или иных сообщений (см. выше); 3) семантические, учитывающие целесообраз­ность, ценность, полезность или существенность ин­формации.

При инженерно-психологическом проектировании для уменьшения времени и вероятности ошибочных действий оператора при вводе и считывании инфор­мации сжатие является основным методом создания компактных систем ввода и систем отображения ин­формации, поскольку возможности их пространствен­ного уплотнения ограничены психофизиологическими особенностями оператора. Для этого используется все рассмотренные методы исключения избыточности, обеспечивающие минимизацию числа кнопок их раз­мещение на панели управления с учетом структуры системы управления, числа команд и частоты обраще­ния к кнопкам пульта. Аналогичное делается для со­здания компактных систем отображения информации вызывного типа с учетом возможного числа сигналов, вероятности их поступления, а также важности и сроч­ности их обработки.

Информация, циркулирующая в системе «чело­век—машина» может обладать такими нежелательны­ми свойствами, как старение и рассеяние, что в случае их неучета приводит к снижению эффективности про­цесса управления.

Старение информации связано с конечным време­нем ее передачи и обработки. Наиболее часто задерж­ки на пути информации от источника до получателя происходят в различного рода накопителях (запомина­ющих устройствах) и каналах связи. Нередко задерж­ку вводят искусственно с целью получить взамен мень­шую вероятность ошибки. Примером является многократное повторение одной и той же информации (временная избыточность). Однако чаще всего старе­ние информации возникает естественным путем.

Если информация носит оперативный характер и используется для принятия решений или выработки управляющих воздействий, то за время задержки она стареет. В результате управление либо принятое реше­ние могут оказаться не эффективным. Для устранения этого оператор должен экстраполировать полученную информацию на некоторое время вперед, то есть осу­ществлять прогнозирование изменения информации во времени. От точности прогноза и будет зависеть эф­фективность управления.

К настоящему времени разработаны следующие алгоритмы прогноза: прогноз по последнему значению, прогноз по математическому ожиданию, статистичес­кий прогноз по одной точке. Каждый из них имеет свои преимущества и недостатки [46], само прогнозирование может осуществляться либо автоматически (тогда в систему обработки и передачи информации допол­нительно вводится специальное устройство — экстраполятор), либо оператором. В этом случае он должен быть специально обучен навыкам экстраполяции. Осо­бое значение при этом имеет способность оператора к антиципации (от лат. anticipatio — предвосхищаю), т. е. способности предвидеть будущие, предстоящие собы­тия. Поскольку изменение ситуации за время прогно­за зачастую представляет собой случайный процесс, то оператор должен уметь осуществлять вероятност­ное прогнозирование. Все это позволит ему более ра­ционально (разумеется, в определенных пределах) ис­пользовать стареющую информацию.

Зная количественные оценки стареющей информа­ции, можно вовремя очищать запоминающие устройства от устаревших данных, назначать сроки принятия ре­шений так, чтобы они базировались на достоверных, не устаревших сведениях, назначать из тех же соображе­ний допустимое время передачи информации и т. п. [46].

В практике экспериментирования и контроля хода технологических процессов обычной является ситуа­ция, когда о значениях какого-либо параметра судят по результатам других величин, связанных с ним. Такой метод называется косвенными измерениями. При этом информация может оказаться рассеянной среди данных о других величинах. Помимо этого часто возника­ет ситуация, когда оператору для решения текущей задачи приходится использовать информацию, посту­пающую от различных, отстоящих друг от друга источ­ников. Рассмотренные ситуации роднит то обстоятель­ство, что в них имеет место рассеяние информации.

Различают два основных вида рассеяния. Во-пер­вых, рассеяние по ансамблю источников, когда нуж­ная для решения задачи информация находится в раз­ных местах информационного поля. Во-вторых, — это рассеяние по времени, когда информацию о каком-либо факте несут не только текущие события либо значения наблюдаемых процессов, но и отстоящие от них на некоторое время. В этом случае для решения задачи одновременно нужно использовать сведения, относящиеся к различным моментам времени.

Следовательно, в общем случае нужная для реше­ния задачи информация может оказаться рассеянной как среди других источников, так и относится к раз­ным временным интервалам. Оказывается, что специ­альная обработка позволяет собрать такие данные, сконцентрировать их. Перспективными путями кон­центрации рассеянной информации являются, с одной стороны, запоминающие устройства действующие на ассоциативном принципе, а с другой — диалоговые системы общения человека с ЭВМ, обеспечивающие итеративное повышение уровня взаимопонимания [46]. Концентрации информации способствует также при­менение компактных устройств ввода и отображения информации, рациональная компоновка рабочего мес­та оператора, упорядоченное размещение элементов и их логическая группировка, своевременная подсказка оператору о необходимых действиях и т. п.

 







Дата добавления: 2014-12-06; просмотров: 1011. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия