Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функции





 

Функция — это независимый программный блок (программная единица), который позволяет получить только один результат.

Примером являются стандартные функции Паскаля. Имеется возможность писать свои функции. Располагаются они в программе так же, как процедуры: после описания данных и перед операторами.

Пример. Program...;

Const

...

Var

...

Функция_1

.....

Функция_n

Begin { основная программа }

.....

End.

 

Функция оформляется так же, как процедура. Отличие имеется в заголовке и способе передачи результата. В общем виде функция оформляется так:

Function Имя(формальные_параметры): Тип_Результата;

Описание локальных переменных

Begin

....

Имя: = Выражение;

....

End;

Формальные параметры – это аргументы функции. Они могут отсутствовать. Результат передается через имя функции, поэтому в заголовке указывается тип результата. По этой же причине среди операторов в теле функции должен быть хотя бы один, в котором имени функции присваивается значение. Именно это значение и будет возвращено функцией в качестве результата.

Пример. Оформить в виде функции операцию возведения вещественного числа в целую степень.

Function Stepen(x: Real; n: Integer): Real;

Var

i: Integer;

P: Real;

Begin

If X = 0 Then

If n = 0 Then

Stepen: = 1

Else

Stepen: = 0

Else

If n = 0 Then

Stepen: = 1

Else

If n > 0 then

Begin

P: = 1;

For i: = 1 to n do

P: = P*X;

Stepen: = P;

End

else

Begin

P: =1;

For i: = 1 to Abs(n) do

P: = P/X;

Stepen: = P;

End;

End; { Stepen }

 

Для вычисления значения функции с конкретным параметром ее, как и процедуру, вызывают из основной программы с указанием фактических параметров–аргумен­тов. В отличие от процедуры имя функции может встречаться в выражениях в качестве операнда. Когда выражение вычисляется, функция выполняется и значением операнда становится величина, возвращаемая функцией.

Формальные параметры функции могут быть только параметрами–значениями. При ее вычислении они не изменяются. Аргументы функции могут быть любых типов:

1) скалярные — числа, символы, булевские;

2) массивы;

3) другие типы.

Сама функция (результат) имеет только скалярный тип, (т.е. число - целое или вещественное, а также символ или булевская переменная).

При обращении к функции (вызове ее) на место формальных параметров подставляются фактические, как в процедуре. Типы, количество и порядок следования фактических и формальных параметров должны совпадать.

В теле функции могут использоваться (вызываться) и другие функции, стандартные или написанные пользователем.

 

Пример. Вычислить гиперболический синус по формуле:

Sinh(x) = (ex – e-x)/2

Функция будет иметь вид

 

Function Sinh(X: Real): Real;

Begin

Sinh: = (Exp(X)-Exp(-X))/2;

End;

К функции можно обращаться из основной программы; из другой функции и из самой себя.

Функции, которые вызывают сами себя, называются рекурсивными. Такие функций часто встречаются в математике, например, вычисление факториала, возведение числа в целую степень, вообще, нахождение любых значений методом математической индукции. Так, факториал вычисляется по формуле:

n! = n*(n -1)! - при n> 0 и

n! = 1 - при n=0.

Для рекурсивных функций необходимо вырабатывать условие завершения (иначе произойдет зацикливание). Это условие для n! записано во второй строчке (при n=0) – так как рекурсия производится на основе второго сомножителя - (n-1)! =(n-1)*(n-2)! и т.д. - до нуля.

Запишем рекурсивную функцию вычисления факториала.

 

Function Fact (N: Integer): Integer;

Begin

If N=0 Then

Fact: = 1

Else

Fact: = N*Fact(N-1);

End;

 







Дата добавления: 2014-12-06; просмотров: 758. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия