Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Алгоритм. Вычислить очередной член U = –U X2/((n + 1) (n+2));





1. Ввести X и Е.

2. Положить n =1, U = X, F =0.

3. Пока |U|> E

Вычислить F=F+U;

Вычислить очередной член U = –U X 2/((n + 1) (n +2));

Получить его номер n=n +2.

4. Вывести X и F.

5. Закончить.

 

Программа для рассмотренного алгоритма будет иметь следующий вид

Program NovSin;

Var

F, X, E, U: Real;

n: Integer;

Begin

Writeln('Введите аргумент Х и погрешность Е');

Readln(X, E);

n: = 1;

U: =X;

F: =0;

While Abs(U)> E Do

Begin

F: =F+U;

U: =-U*Sqr(X)/(2*N*(2*N+1));

N: =N+1;

End;

Writeln(X: 8: 6, ' SinX=', F: 10: 6,

' Машинный SinX=', Sin(X): 10: 6);

End.

Количество повторений цикла заранее неизвестно. Оно зависит от требуемой точности и от значения аргумента. Если X=0, то цикл не выполняется ни разу. Количество повторений цикла в данном случае можно узнать по номеру N последнего вычисленного члена. В других случаях это можно сделать с помощью обычного счетчика:

k: = 0;

while abs(U)> E do

begin

k: = k+1;

F: =.......;

......

end;

writeln('k= ', k);

 

Решение уравнений приближенными методами

 

В общем виде уравнение может быть записано так:

f(x)= 0,

где f(x) – произвольная функция. При этом невозможно записать формулу для нахождения его корней, за исключением квадратного и линейного уравнения. Для таких случаев корни определяются приближенными методами. Наиболее распространенными из них являются:

- метод деления отрезка пополам;

- метод Ньютона и

- метод прохождения отрезка с переменным шагом.

Метод деления отрезка пополам

 

Это — наиболее простой метод, позволяющий найти корень для функции любого вида, если только правильно выбран интервал, на котором он существует. Метод использует известное из математики свойство, которое заключается в следующем. Если на некотором отрезке функция меняет знак, то на этом отрезке она пересекает ось Х, т.е. имеет корень.

Поиск корня осуществляется следующим образом.

1. Выбирается интервал [ a, b ] значений аргумента Х, на котором ищется корень. (На этом интервале, как отмечалось выше, функция должна менять знак).

2. Начальное значение корня X0 принимается равным левой (a) или правой (b) границе интервала.

3. Вычисляется очередное приближение по формуле

Х = (Правая_граница - Левая_граница)/2.

4. Определяются значения функции f на одной из границ отрезка (например, левой) и в точке очередного приближения Х.

5. Если эти значения имеют разные знаки, то одну из границ (правую — см. п. 4) переносят в точку Х.

Пункты 3 — 5 повторяют до тех пор, пока разность между двумя соседними значениями Х не станет меньше или равно заданной погрешности Е. Последнее приближение Х считается корнем.

Составим алгоритм и программу нахождения корня описанным методом, считая что в программе будет использована функция f(x).







Дата добавления: 2014-12-06; просмотров: 640. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия