Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Алгоритм. Вычислить очередной член U = –U X2/((n + 1) (n+2));





1. Ввести X и Е.

2. Положить n =1, U = X, F =0.

3. Пока |U|> E

Вычислить F=F+U;

Вычислить очередной член U = –U X 2/((n + 1) (n +2));

Получить его номер n=n +2.

4. Вывести X и F.

5. Закончить.

 

Программа для рассмотренного алгоритма будет иметь следующий вид

Program NovSin;

Var

F, X, E, U: Real;

n: Integer;

Begin

Writeln('Введите аргумент Х и погрешность Е');

Readln(X, E);

n: = 1;

U: =X;

F: =0;

While Abs(U)> E Do

Begin

F: =F+U;

U: =-U*Sqr(X)/(2*N*(2*N+1));

N: =N+1;

End;

Writeln(X: 8: 6, ' SinX=', F: 10: 6,

' Машинный SinX=', Sin(X): 10: 6);

End.

Количество повторений цикла заранее неизвестно. Оно зависит от требуемой точности и от значения аргумента. Если X=0, то цикл не выполняется ни разу. Количество повторений цикла в данном случае можно узнать по номеру N последнего вычисленного члена. В других случаях это можно сделать с помощью обычного счетчика:

k: = 0;

while abs(U)> E do

begin

k: = k+1;

F: =.......;

......

end;

writeln('k= ', k);

 

Решение уравнений приближенными методами

 

В общем виде уравнение может быть записано так:

f(x)= 0,

где f(x) – произвольная функция. При этом невозможно записать формулу для нахождения его корней, за исключением квадратного и линейного уравнения. Для таких случаев корни определяются приближенными методами. Наиболее распространенными из них являются:

- метод деления отрезка пополам;

- метод Ньютона и

- метод прохождения отрезка с переменным шагом.

Метод деления отрезка пополам

 

Это — наиболее простой метод, позволяющий найти корень для функции любого вида, если только правильно выбран интервал, на котором он существует. Метод использует известное из математики свойство, которое заключается в следующем. Если на некотором отрезке функция меняет знак, то на этом отрезке она пересекает ось Х, т.е. имеет корень.

Поиск корня осуществляется следующим образом.

1. Выбирается интервал [ a, b ] значений аргумента Х, на котором ищется корень. (На этом интервале, как отмечалось выше, функция должна менять знак).

2. Начальное значение корня X0 принимается равным левой (a) или правой (b) границе интервала.

3. Вычисляется очередное приближение по формуле

Х = (Правая_граница - Левая_граница)/2.

4. Определяются значения функции f на одной из границ отрезка (например, левой) и в точке очередного приближения Х.

5. Если эти значения имеют разные знаки, то одну из границ (правую — см. п. 4) переносят в точку Х.

Пункты 3 — 5 повторяют до тех пор, пока разность между двумя соседними значениями Х не станет меньше или равно заданной погрешности Е. Последнее приближение Х считается корнем.

Составим алгоритм и программу нахождения корня описанным методом, считая что в программе будет использована функция f(x).







Дата добавления: 2014-12-06; просмотров: 640. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия