Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Роль определения понятия в процессе его усвоения





 

Мы показали, что понятие не может быть передано уча­щимся в готовом виде, они должны получить его сами, взаи­модействуя с относящимися к нему предметами. Какова же роль определения в этом процессе взаимодействия? Определе­ние задает как бы точку зрения - ориентировочную основу - для оценки предметов, с которыми взаимодействует обучае­мый. Так, получая определение угла, ученик может теперь анализировать различные предметы с точки зрения наличия или отсутствия в них признаков угла. Аналогично, имея опре­деление окружности, учащийся может анализировать различ­ные формы объектов с точки зрения тех признаков, которые содержатся в определении окружности. Такая реальная рабо­та по оценке различных предметов постепенно создает в голо­ве ученика адекватное понятие как обобщенный и абстракт­ный образ предметов данного класса.

Таким образом, получение определения - это не конец усвоения понятия, а лишь первый шаг на этом пути. Сле­дующий шаг - включение определения понятия в те действия учащихся, которые они выполняют с соответствующими объектами и с помощью которых строят в своей голове по­нятие об этих объектах.

Следующий важный шаг состоит в том, чтобы научить школьников ориентироваться на содержание определения при выполнении различных действий с объектами. Другими сло­вами, надо добиться того, чтобы точка зрения, предложенная учителем, была принята и реально использовалась учащими­ся, т.е. входила в содержание ориентировочной основы вы­полняемых действий. Если это не обеспечено, то в одних слу­чаях ученики будут опираться на свойства, которые они сами выделили в объектах; в других случаях дети могут использо­вать только часть указанных свойств; в третьих - могут доба­вить к указанным в определении свои, что также приводит к ошибкам. Если вернемся к вышеприведенным примерам, то обнаружим в них все эти случаи. Так, признавая за перпенди­куляр вертикаль, школьник опирается на признак, которого нет в определении перпендикулярных прямых. Относя эллипс к классу окружностей, ученик учитывает лишь часть признаков указанных в определении окружности. Аналогичное имеет место и в примере с распознаванием смежных углов. При распознавании прямоугольных треугольников ученики, наоборот, привнесли дополнительный признак: пространственное положение прямого угла. С точки зрения этих учеников прямой угол не должен быть при вершине треугольника.

Итак, главная причина формализма при усвоении понятий состоит в том, что не уделяется должного внимания организации работы учащихся с определениями понятий. Только этим можно объяснить и такой удивительный факт, что десятилетиями в некоторых учебниках геометрии давались ошибочные определения, и этого не замечали ни учителя, ни методисты, ни ученики. В качестве примера возьмем учебник А.П. Киселева. До сих пор он считается одним из лучших и время от времени раздаются призывы вернуться к работе по этому учебнику. Не подвергая сомнению качество этого учебника в целом, отметим, что и в нем содержится немало неправильных определений понятий. В самом деле, прилежащие углы определяются как два угла, имеющие общую вершину и общую сторону. Если согласиться с этим и на основе именно этих свойств распознавать прилежащие углы, то мы должны будем отнести к прилежащим следующие углы: АОС и АОВ, а также углы АОС и ВОС.

 

 

С

 

 

В самом деле, эти углы имеют все признаки, которые указаны в определении: два угла, общая вершина (точка О) и общая сторона (в первом случае общей стороной является АО, во втором - ОС). Но эти углы не прилежащие. Следовательно, определение Киселева не позволяет корректно выделять класс прилежащих углов.

Аналогична ситуация с вертикальными углами. Они определяются как два угла, имеющие общую вершину, стороны одного угла продолжают стороны другого. Согласно данному определению, мы должны признать вертикальными не только углы АОВ и СОВ, но и углы АОD и угол, дополнительный к углу СОВ, так как он образован теми же лучами, что и угол СОВ, и вершина его находится в той же точке. На том же основании угол СОВ будет вертикален с углом, дополнительным к углу АОD.

 

 

Аналогичным образом можно доказать, что определение смежных углов, данное в учебнике Киселева, также является неверным. На этом перечень ошибок, содержащихся в учеб­нике Киселева, не заканчивается. Заметим, что многие из них были обнаружены учащимися, которых научили работать с определениями понятий. Когда же определение лежит мерт­вым грузом в памяти человека, то несостоятельность этого определения не обнаруживается.

 







Дата добавления: 2014-10-22; просмотров: 519. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия