Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретическая часть. Метод крутильного баллистического маятника, используемый в данной работе для определения скорости пули





Метод крутильного баллистического маятника, используемый в данной работе для определения скорости пули, основан на применении закона сохранения момента импульса и основного уравнения динамики вращательного движения твердого тела. Моментом импульса материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением (рис. 11.1):

, (11.1)

где − радиус-вектор, проведенный из точки О в точку А, − импульс материальной точки А. Модуль вектора момента импульса:

(11.2)

где α – угол между векторами и .

При вращении твердого тела вокруг неподвижной оси Z каждая его частица массой mi движется по окружности постоянного радиуса ri с некоторой скоростью υ i. В этом случае – Момент импульса отдельной частицы тела равен:

(11.3)

Момент импульса твердого тела относительно оси Z есть сумма моментов импульса отдельных частиц тела:

(11.4)

Используя соотношение , получим:

(11.5)

Таким образом, момент импульса твердого тела относительно оси Z равен произведению момента инерции тела относительно той же оси на угловую скорость вращения.

Если продифференцировать по времени это выражение, то получим уравнение:

(11.6)

где ε – угловое ускорение твердого тела.

Основное уравнение динамики вращательного движения тела относительно неподвижной оси Z имеет вид: , где момент внешних сил, действующих на тело относительно оси Z. Тогда уравнение (11.6) можно записать: Данное уравнение также называется уравнением динамики вращательного движения тела (другая форма записи) и в векторном виде может быть представлено следующим образом:

(11.7)

В замкнутой системе момент внешних сил равен нулю (), поэтому , следовательно:

. (11.8)

Это выражение представляет собой закон сохранения момента импульса: момент импульса замкнутой системы не изменяется со временем.

Используя закон сохранения момента импульса и уравнение динамики вращательного движения, можно изучать взаимодействия тел, в результате которых одно из них начинает вращаться.

Соударение пули с баллистическим крутильным маятником является одним из таких взаимодействий. Крутильный маятник представляет собой симметричное тело, закрепленное вертикально с помощью двух упругих нитей. Ось вращения маятника проходит через точки крепления подвеса и центр масс тела (рис.11.2). Если повернуть тело в горизонтальной плоскости на угол φ, то в закручивающихся нитях подвеса возникают силы, возвращающие его в начальное положение. При небольших углах закручивания момент этих сил относительно оси маятника пропорционален величине угла:

, (11.9)

где D – постоянная упругих сил (постоянная кручения).

Когда горизонтально летящая пуля попадает в маятник, то происходит неупругое соударение этих тел. После удара маятник начинает совершать крутильные колебания относительно оси вращения. Движение колебательной системы определяется уравнением гармонических колебаний, которое следует из основного закона динамики вращательного движения (11.7) и соотношения (11.9):

. (11.10)

где J – момент инерции колебательной системы относительно оси вращения, .

Решением этого уравнения является:

, (11.11)

где φ 0 – максимальный угол отклонения маятника, ω – частота колебаний маятника. Согласно закону сохранения момента импульса начальные условия для данной системы имеют вид:

(11.12)

где m –масса пули, υ – ее скорость, – расстояние от оси вращения маятника до точки попадания пули.

Из(11.11)можно определить, что:

(11.13)

где циклическая частота колебаний системы (маятника).

Соответственно, период колебаний маятника:

. (11.14)

Из (11.12) и (11.13) можно определить скорость пули:

. (11.15)

Момент инерции данной колебательной системы (маятника) (рис.11.4) можно рассчитать, используя соотношение:

(11.16)

где m0 – масса груза, 1 = 0, 0525 м – расстояние от оси вращения до центров масс грузов, – момент инерции свободной рамки (без грузов).

Момент инерции колебательной системы можно найти из отношения квадратов периодов колебаний свободной рамки и колебательной системы. Квадрат периода колебаний свободной рамки определяется следующим образом:

(11.17)

Следовательно:

. (11.18)

Отношение (11.18) позволяет определить момент инерции колебательной системы:

. (11.19)

Скорость пули можно найти из (11.15), используя соотношение (11.19):

. (11.20)







Дата добавления: 2014-10-29; просмотров: 650. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия