Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретическая часть. Метод крутильного баллистического маятника, используемый в данной работе для определения скорости пули





Метод крутильного баллистического маятника, используемый в данной работе для определения скорости пули, основан на применении закона сохранения момента импульса и основного уравнения динамики вращательного движения твердого тела. Моментом импульса материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением (рис. 11.1):

, (11.1)

где − радиус-вектор, проведенный из точки О в точку А, − импульс материальной точки А. Модуль вектора момента импульса:

(11.2)

где α – угол между векторами и .

При вращении твердого тела вокруг неподвижной оси Z каждая его частица массой mi движется по окружности постоянного радиуса ri с некоторой скоростью υ i. В этом случае – Момент импульса отдельной частицы тела равен:

(11.3)

Момент импульса твердого тела относительно оси Z есть сумма моментов импульса отдельных частиц тела:

(11.4)

Используя соотношение , получим:

(11.5)

Таким образом, момент импульса твердого тела относительно оси Z равен произведению момента инерции тела относительно той же оси на угловую скорость вращения.

Если продифференцировать по времени это выражение, то получим уравнение:

(11.6)

где ε – угловое ускорение твердого тела.

Основное уравнение динамики вращательного движения тела относительно неподвижной оси Z имеет вид: , где момент внешних сил, действующих на тело относительно оси Z. Тогда уравнение (11.6) можно записать: Данное уравнение также называется уравнением динамики вращательного движения тела (другая форма записи) и в векторном виде может быть представлено следующим образом:

(11.7)

В замкнутой системе момент внешних сил равен нулю (), поэтому , следовательно:

. (11.8)

Это выражение представляет собой закон сохранения момента импульса: момент импульса замкнутой системы не изменяется со временем.

Используя закон сохранения момента импульса и уравнение динамики вращательного движения, можно изучать взаимодействия тел, в результате которых одно из них начинает вращаться.

Соударение пули с баллистическим крутильным маятником является одним из таких взаимодействий. Крутильный маятник представляет собой симметричное тело, закрепленное вертикально с помощью двух упругих нитей. Ось вращения маятника проходит через точки крепления подвеса и центр масс тела (рис.11.2). Если повернуть тело в горизонтальной плоскости на угол φ, то в закручивающихся нитях подвеса возникают силы, возвращающие его в начальное положение. При небольших углах закручивания момент этих сил относительно оси маятника пропорционален величине угла:

, (11.9)

где D – постоянная упругих сил (постоянная кручения).

Когда горизонтально летящая пуля попадает в маятник, то происходит неупругое соударение этих тел. После удара маятник начинает совершать крутильные колебания относительно оси вращения. Движение колебательной системы определяется уравнением гармонических колебаний, которое следует из основного закона динамики вращательного движения (11.7) и соотношения (11.9):

. (11.10)

где J – момент инерции колебательной системы относительно оси вращения, .

Решением этого уравнения является:

, (11.11)

где φ 0 – максимальный угол отклонения маятника, ω – частота колебаний маятника. Согласно закону сохранения момента импульса начальные условия для данной системы имеют вид:

(11.12)

где m –масса пули, υ – ее скорость, – расстояние от оси вращения маятника до точки попадания пули.

Из(11.11)можно определить, что:

(11.13)

где циклическая частота колебаний системы (маятника).

Соответственно, период колебаний маятника:

. (11.14)

Из (11.12) и (11.13) можно определить скорость пули:

. (11.15)

Момент инерции данной колебательной системы (маятника) (рис.11.4) можно рассчитать, используя соотношение:

(11.16)

где m0 – масса груза, 1 = 0, 0525 м – расстояние от оси вращения до центров масс грузов, – момент инерции свободной рамки (без грузов).

Момент инерции колебательной системы можно найти из отношения квадратов периодов колебаний свободной рамки и колебательной системы. Квадрат периода колебаний свободной рамки определяется следующим образом:

(11.17)

Следовательно:

. (11.18)

Отношение (11.18) позволяет определить момент инерции колебательной системы:

. (11.19)

Скорость пули можно найти из (11.15), используя соотношение (11.19):

. (11.20)







Дата добавления: 2014-10-29; просмотров: 650. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия