Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Перемещение, элементарное перемещение





Вектором перемещения точки за промежуток от до называется приращение радиус-вектора этой точки за этот промежуток он направлен вдоль хорды стягивающий соответствующий участок траектории точки. Поэтому во всех случаях, кроме премера, модуль перемещения меньше длины пути за этот же . На рисунке вектор перемещения .

Однако, по мере уменьшения длины пути разность между хордой и перемещением уменьшается. Следовательно, рассматривая элементарное перемещение по траектории за достаточно малый промежуток вреени (от до ) можно пренебречь отличием между и . Значит, вектор направлени по касательной к траектории в сторону движения точки. Также ка единичный вектор касат. т.о. вектор перемещения материальной точки за любой конечный промежуток времени от до можно представить в виде:

приращение координат за .

P.S.: В математике и - дифференциалы соответствующих функций времени??? т.е. линейные части приращений этих функций при произвольном изменении аргумента от до . По определению в мтематике ,

а ;

и - производные т.е. приращение функций и существует отличие от дифференциалов этих функций. В физике различают произвольное (конечное) приращение аргумента и дифференциала аргумента . Под дифференциалом аргумента понимают столь малое его приращение (элементарное), при котором разностью между соответствующим приращением функции и линейной частью её приращения можно пренебречь т.е.??? . Поэтому, в физике используют предложенные Лейбницем обозначение производной и трактуют эти выражения как отношения не математической дифференциала функции и аргумента, а малых (элеиентарных) приращений функцмм м аргумента.

Скорость.

Для характеристики направления и быстроты движения точки вводится векторная физическая величина- скорость.

Пусть за точка переместилась из т.1 в т.2. Вектор перемещения представляет собой приращение радиус-вектора за время . Отношение называется средней скоросью точки за время . Направление совпадает с . Скорость точки в заданный момент мремени определяется как предел отношения при т.е.

т.е. производной от радиус-вектора по времени и направлению по касательной к траектории в заданной точке в сторону движения. Модуль . Вектор можно разложить по базису т.е. на три состояния по осям декартовой системы координат

;

; ; ;

;







Дата добавления: 2014-10-29; просмотров: 942. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия