Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Перемещение, элементарное перемещение





Вектором перемещения точки за промежуток от до называется приращение радиус-вектора этой точки за этот промежуток он направлен вдоль хорды стягивающий соответствующий участок траектории точки. Поэтому во всех случаях, кроме премера, модуль перемещения меньше длины пути за этот же . На рисунке вектор перемещения .

Однако, по мере уменьшения длины пути разность между хордой и перемещением уменьшается. Следовательно, рассматривая элементарное перемещение по траектории за достаточно малый промежуток вреени (от до ) можно пренебречь отличием между и . Значит, вектор направлени по касательной к траектории в сторону движения точки. Также ка единичный вектор касат. т.о. вектор перемещения материальной точки за любой конечный промежуток времени от до можно представить в виде:

приращение координат за .

P.S.: В математике и - дифференциалы соответствующих функций времени??? т.е. линейные части приращений этих функций при произвольном изменении аргумента от до . По определению в мтематике ,

а ;

и - производные т.е. приращение функций и существует отличие от дифференциалов этих функций. В физике различают произвольное (конечное) приращение аргумента и дифференциала аргумента . Под дифференциалом аргумента понимают столь малое его приращение (элементарное), при котором разностью между соответствующим приращением функции и линейной частью её приращения можно пренебречь т.е.??? . Поэтому, в физике используют предложенные Лейбницем обозначение производной и трактуют эти выражения как отношения не математической дифференциала функции и аргумента, а малых (элеиентарных) приращений функцмм м аргумента.

Скорость.

Для характеристики направления и быстроты движения точки вводится векторная физическая величина- скорость.

Пусть за точка переместилась из т.1 в т.2. Вектор перемещения представляет собой приращение радиус-вектора за время . Отношение называется средней скоросью точки за время . Направление совпадает с . Скорость точки в заданный момент мремени определяется как предел отношения при т.е.

т.е. производной от радиус-вектора по времени и направлению по касательной к траектории в заданной точке в сторону движения. Модуль . Вектор можно разложить по базису т.е. на три состояния по осям декартовой системы координат

;

; ; ;

;







Дата добавления: 2014-10-29; просмотров: 942. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия