Характеристики точности измерений
Каждая погрешность в отдельности не может характеризовать точность измерений, поскольку она случайна. Нужна такая оценка, которая характеризует точность в среднем. Общепринятой характеристикой точности является предложенная К.Ф. Гауссом средняя квадратическая погрешность , (5.4) где Δ 1, Δ 2, …, Δ n – случайные погрешности измерений. Достоинством этой характеристики является ее устойчивость, независимость от знаков отдельных погрешностей и усиленное влияние больших погрешностей. Теоретически строгим значением средней квадратической погрешности считают оценку, получаемую по формуле (5.4) при бесконечно большом числе измерений, то есть при n ®¥. Такую строгое значение средней квадратической погрешности часто именуют термином стандарт. На практике приходится пользоваться ограниченным числом измерений, отчего оценки, вычисленные по формуле (5.4) вследствие случайного характера погрешностей Δ i отличаются от строгой оценки – стандарта. Средняя квадратическая погрешность определения m по формуле (5.4) приближенно равна . Формула (5.4) находит применение при исследовании точности геодезических приборов и методов измерений, когда известно достаточно точное, близкое к истинному, значение X измеряемой величины. Но обычно значение измеряемой величины заранее неизвестно. Тогда вместо формулы Гаусса пользуются формулой Бесселя (см. раздел 5.5), определяющей среднюю квадратическую погрешность по отклонениям результатов измерений от среднего. В большинстве случаев погрешности измерений распределены по нормальному закону, установленному Гауссом. Это означает, что в интервал от – m до + m попадает 68, 27% результатов повторных измерений одной и той же величины. В интервал от –2 m до +2 m попадает 95, 45%, а в интервал от –3 m до +3 m попадает 99, 73%. Таким образом, вероятность того, что случайная погрешность превышает 2 m, равна 4, 5%, а что она превышает 3 m - лишь 0, 27%. Поэтому погрешности, большие 2 m, считают практически невероятными и относят к числу грубых погрешностей, промахов. Величину 2 m называют предельной погрешностью и используют как допуск при отбраковке некачественных результатов измерений. Dпред = 2 m. В ряде случаев за предельно допустимую погрешность принимают величину 3 m. Величины D, m, Dпред, выражаемые в единицах измеряемой величины, называются абсолютными погрешностями. Наряду с абсолютными применяются также и относительные погрешности, представляющие собой отношение абсолютной погрешности к измеряемой величине. Относительную погрешность принято выражать в виде простой дроби с единицей в числителе, например , где l - значение измеряемой величины, а N – знаменатель дроби. Относительные погрешности используют, например, когда точность результата измерения зависит от измеряемой величины. Так при одинаковой абсолютной погрешности двух измеренных линий точнее измерена та, длина которой больше.
|