Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Характеристики точности измерений





Каждая погрешность в отдельности не может характеризовать точность измерений, поскольку она случайна. Нужна такая оценка, которая характеризует точность в среднем.

Общепринятой характеристикой точности является предложенная К.Ф. Гауссом средняя квадратическая погрешность

, (5.4)

где Δ 1, Δ 2, …, Δ n – случайные погрешности измерений. Достоинством этой характеристики является ее устойчивость, независимость от знаков отдельных погрешностей и усиленное влияние больших погрешностей.

Теоретически строгим значением средней квадратической погрешности считают оценку, получаемую по формуле (5.4) при бесконечно большом числе измерений, то есть при n ®¥. Такую строгое значение средней квадратической погрешности часто именуют термином стандарт.

На практике приходится пользоваться ограниченным числом измерений, отчего оценки, вычисленные по формуле (5.4) вследствие случайного характера погрешностей Δ i отличаются от строгой оценки – стандарта. Средняя квадратическая погрешность определения m по формуле (5.4) приближенно равна .

Формула (5.4) находит применение при исследовании точности геодезических приборов и методов измерений, когда известно достаточно точное, близкое к истинному, значение X измеряемой величины. Но обычно значение измеряемой величины заранее неизвестно. Тогда вместо формулы Гаусса пользуются формулой Бесселя (см. раздел 5.5), определяющей среднюю квадратическую погрешность по отклонениям результатов измерений от среднего.

В большинстве случаев погрешности измерений распределены по нормальному закону, установленному Гауссом. Это означает, что в интервал от – m до + m попадает 68, 27% результатов повторных измерений одной и той же величины. В интервал от –2 m до +2 m попадает 95, 45%, а в интервал от –3 m до +3 m попадает 99, 73%.

Таким образом, вероятность того, что случайная погрешность превышает 2 m, равна 4, 5%, а что она превышает 3 m - лишь 0, 27%. Поэтому погрешности, большие 2 m, считают практически невероятными и относят к числу грубых погрешностей, промахов.

Величину 2 m называют предельной погрешностью и используют как допуск при отбраковке некачественных результатов измерений.

Dпред = 2 m.

В ряде случаев за предельно допустимую погрешность принимают величину 3 m.

Величины D, m, Dпред, выражаемые в единицах измеряемой величины, называются абсолютными погрешностями.

Наряду с абсолютными применяются также и относительные погрешности, представляющие собой отношение абсолютной погрешности к измеряемой величине. Относительную погрешность принято выражать в виде простой дроби с единицей в числителе, например

,

где l - ­ значение измеряемой величины, а N – знаменатель дроби.

Относительные погрешности используют, например, когда точность результата измерения зависит от измеряемой величины. Так при одинаковой абсолютной погрешности двух измеренных линий точнее измерена та, длина которой больше.







Дата добавления: 2014-11-10; просмотров: 481. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия