Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Средняя квадратическая





Средняя квадратическая вычисляется по формуле:

, (6.5)

Она равна корню квадратному из суммы квадратов данных, деленной на их число.

Например, если имеется пять вариантов: 1, 4, 5, 5, 5, то средняя квадратическая:

.

Употребляется средняя квадратическая при расчете средних радиусов окружностей.

Пример

Измерения диаметров колоний, полученных от посева микробов определенного вида, дали следующие результаты (в мм): 15; 20; 10; 25; 30.

Для сравнения этого посева с другими требуется определить средний диаметр колоний. Применив формулу средней квадратической, имеем

.

Средняя арифметическая диаметров:

дает неправильную характеристику группы.

Это можно проверить по правилу единства суммарного действия.

Общая площадь всех пяти колоний была:

3, 14× (7, 52+102+52+12, 52+152) = 1766, 25 мм2.

Если взять пять кругов с одинаковым диаметром, равным средней арифметической μ = 20, то общая площадь составит 5× З, 14× 102 = 1570 мм2, что гораздо меньше общей фактической площади.

Если же взять пять кругов с одинаковым диаметром, равным средней квадратической S = 21, 22 мм2, то общая площадь будет 5× З, 14× 10, 612 = 1767, 4 мм2, т. е. практически той же суммарной площади, которую имели пять измеренных колоний.

Мода

Модой, или модусом, называется такая варианта или класс распределения вариант, который в исследуемой группе особей встречается наиболее часто. В качестве примера рассмотрим распределение, представленное в таблице 6.2.

Таблица 6.2 – Пример распределения

Классы 100 – 119 120 – 139 140 – 159 160 – 179 180 – 199 200 – 219 220 – 239 240 – 259 260 – 279 280 – 299 300 – 319
Частоты                      

 

В этом распределении наиболее многочисленным является пятый класс (180 – 199) с частотой 250. Это модальный класс.

В качестве первого приближения можно принять за моду средину модального класса, т. е. 190.

Более точное значение моды можно получить по формуле:

, (6.6)

где:

М0 – мода;

Wα – начало модального класса;

k – величина классового промежутка;

f1 – частота класса, предшествующего модальному;

f2 – частота модального класса;

f3 – частота класса, следующего за модальным.

Для приведенного распределения Wα = l80, k = 20, f1 = 160,
f2 = 250, f3 = 240 (таблица 6.3).

Следовательно, мода этого распределения

Обычно, если классы взяты не слишком мелкие, имеется всего один модальный класс.

В некоторых распределениях встречаются два или три модальных класса. Иногда это может быть следствием того, что в изучаемую группу попал разнородный материал, относящийся к разным категориям (более крупной и менее крупной) по изучаемому признаку.







Дата добавления: 2014-11-10; просмотров: 651. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия