Приклади розв’язання завдань
Приклад 1. Знайти спектр одиничного прямокутного імпульсу величиною А і тривалістю 2 τ (рис. 2, а). Розв'язання. Спектр сигналу визначимо за виразом [3]
Рис. 2 Знайдемо модуль спектральної щільності: . Графік змінення модуля спектральної щільності одиничного прямокутного імпульсу показано на рис. 2, б. Частотне зображення сигналів зазвичай використовується при визначенні практичної ширини спектра сигналу, для розрахунку якої необхідно знайти енергетичні характеристики сигналу. Приклад 2. Знайти практичну ширину спектра (ПШС) одиничного прямокутного імпульсу з амплітудою А і тривалістю (рис. 2, а), у якій зосереджено 95 % усієї енергії сигналу. Розв’язання. Для визначення ПШС побудуємо графік функції , де W0 – повна енергія сигналу, Wi – енергія сигналу, яка зосереджена у спектрі частот (0 … ω i), і за ним визначимо ПШС. Визначимо повну енергію одиничного імпульсу: . Енергію Wi знайдемо за формулою
. Модуль спектральної щільності сигналу .
Підставимо значення S(ω) у попередній вираз і отримаємо . Підставивши ці вирази у функцію , отримаємо формулу для визначення відносної величини енергії одиничного імпульсу в смузі частот від 0 до : .
На рис. 3 зображено графік функції
. Рис. 3
З наведених розрахунків і графіка фукції випливає, що 90 % енергії сигналу зосереджено у смузі частот від 0 до , а понад 95 % — у смузі частот від 0 до . Останній діапазон може бути взятий як практична ширина спектра одиничного прямокутного імпульсу. При цьому подальше збільшення ПШС приводить до незначного збільшення енергії у цій смузі частот, оскільки крива після є досить пологою.
|