Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теоретические сведения. Электрическое поле - вид материи, осуществляющий взаимодействие не­подвижных электрических зарядов





Электрическое поле - вид материи, осуществляющий взаимодействие не­подвижных электрических зарядов. Каждый заряд имеет свое электростатиче­ское поле, которое в каждой точке пространства характеризуется вектором на­пряженности и электростатическим потенциалом φ.

Напряженностью электростатического поля в точке называется векторная физическая величина, численно равная отношению силы , действующей на пробный заряд , к величине этого заряда, помещенного в данную точку поля:

. (1)

Если пробный заряд =+l, то . А потому вектор напряженности электростатического поля равен силе, действующей на единичный пробный за­ряд.

Направление вектора совпадает с направлением силы. Из формулы (1) следует, что единица напряженности электрического поля - ньютон на кулон (Н/Кл); 1Н/Кл - напряженность такого поля, которое на точечный заряд в 1Кл действует с силой в 1Н.

Вектор во всех точках поля направлен радиально от заряда, если он по­ложителен, и радиально к заряду, если он отрицателен (рис. 1).

Рис. 1

 

Электростатическое поле можно изобразить силовыми линиями. Силовой линией, или линией напряженности электростатического поля называется ли­ния, в каждой точке которой вектор напряженности направлен по касательной (рис. 2),

Рис.2

 

Силовые линии всегда начинаются на поверхности положительно заря­женных тел, а заканчиваются на поверхности отрицательно заряженных тел или уходят в бесконечность.

Если поле создано уединенным точечным зарядом q, то работа, совершае­мая полем при перемещении пробного заряда из положения 1 в положение 2 (рис. 3), не зависит от траектории перемещения:

. (2)

Рис.3

 

Из выражения (2) видно, что работа определяется только положением на­чальной 1 и конечной 2 точек. Силы, работа которых не зависит от траектории движения, называются консервативными. В этом случае электрическое поле является потенциальным, а формула принимает вид . Знак «ми­нус» означает, что положительная работа совершается самим полем за счет уменьшения энергии

. (3)

Значит, потенциальная энергия двух точечных зарядов, находящихся на расстоянии r,

. (4)

Постоянная С =0, т.к. естественно считать, что при

Wp → 0.

Величину называют потенциалом поля точечного заряда. Тогда формула (2) принимает вид

А 1, 2= q 012). (5)

Подставив в (4) значения =+l и С =0, получим . Потенциал некоторой точки поля есть физическая величина, численно равная потенциальной энергии единичного положительного заряда, помещенного в эту точку. Потен­циал энергетическая характеристика поля.

Пользуясь формулами (2), (4) и (5), уравнение работы, совершаемой элек­трическими силами при перемещении заряда из точки 1 в точку 2, можно за­писать в виде

. (6)

Работа при перемещении точечного заряда равна произведению этого за­ряда на разность потенциалов в начальной и конечной точках пути.

Если точка 2 лежит в бесконечности, то потенциальная энергия заряда в ней равна нулю (Wp 2 =0), а следовательно, и потенциал поля также равен нулю (φ 2 = 0). Тогда согласно (6)

. (7)

Отсюда

. (8)

Поэтому потенциал данной точки поля можно определить как физическую величину, численно равную работе, совершаемой электрическими силами при перемещении единичного положительного заряда из данной точки в бесконечность.

В системе СИ за единицу потенциала принят вольт (В), т.е. потенциал такой точки поля, для перемещения в которую из бесконечности заряда, равно­го 1 Кл, необходимо совершить работу в 1 Дж: 1 Дж=1Кл·В. Отсюда 1 В=Дж/Кл. Геометрическое место точек поля, обладающих равными потенциа­лами, называется эквипотенциальной поверхностью. Работа при перемещении заряда по ней равна нулю. Этот вывод вытекает из определения работы поля при перемещении в нем заряда: А = q 012), т.к. φ 12.

Силовые линии всегда нормальны к эквипотенциальным поверхностям. До­кажем это методом от противного. Пусть Q - часть этой поверхности (рис. 4), В и С - ее точки, а вектор не перпендикулярен Q. Но тогда должна быть E t -

касательная составляющая вектора , параллельная поверхности Q. Значит, работа на участке ВС отлична от нуля, что невозможно. Следовательно, вектор перпендикулярен эквипотенциальной поверхности.

Рис. 4

 

Определим связь между напряженностью и потенциалом. С одной сторо­ны, работа при перемещении заряда q 0 с эквипотенциальной поверхности, имеющей потенциал φ, на расположенную поблизости эквипотенциальную по­верхность с потенциалом φ + Δ φ по нормали к ней(на расстояние Δ n) рассчи­тывается по формуле Δ А = q 0 E × D n (рис. 5).

Рис. 5

 

Напряженность поля при бесконечно малом перемещении можно счи­тать постоянной. С другой стороны, величину этой работы можно вычислить по формуле (5). Таким образом,

.

Откуда , (9)

или

.

Знак «минус» указывает на то, что вектор напряженности направлен в сто­рону наибольшей скорости убывания потенциала.

Из формулы (9) следует, что единица напряженности 1Н/Кл=1В/м, где В (вольт) - единица потенциала электрического поля.

Рис. 6 Чтобы с помощью линий напряженности охарактеризовать не только на­правление, но и величину напряженности электрического поля, условились проводить их с определенной густотой (рис.6). Число линий напряженности, пронизывающих единицу поверхности, перпендикулярной им, должно быть равно или пропорционально модулю вектора . Е А< Е В.

Число силовых линий пронизывающих элементарную площадку dS, нормаль n которой образует с направление вектора Е угол a, называется потоком напряженности электрического поля через эту площадку , (рис. 7)

 

Рис. 7

 

Для произвольной замкнутой поверхности

, (10)

где Еn = E cosa.

Поток не зависит от формы и размеров замкнутой поверхности, места нахождения заряда внутри охватываемого этой поверхностью объема.

Поток вектора напряженности, пронизывающий любую замкнутую поверхность, окружающую электрические заряды, равен алгебраической сумме зарядов внутри этой поверхности деленной на ee0

, (11)

где .

 

Это положение называется теоремой Остроградского-Гаусса

. (12)

С помощью теоремы Остроградского-Гаусса можно определять напряженность полей, создаваемых заряженными телами различной формы.

Напряженность поля создаваемого равномерно заряженной бесконечной плоскостью

, (13)

где .

Рис. 8

 

Поле создаваемое равномерно заряженной бесконечной плоскостью однородно и не зависит от расстояния до плоскости.

Напряженность поля между двумя бесконечными параллельными разноименно заряженными плоскостями.

 

Рис. 9

На рис. 9 дан вертикальный разрез плоскостей, поле положительно заряженной плоскости изображено сплошными силовыми линиями, поле отрицательно заряженной плоскости – прерывистыми. Так как по величине поверхностные плотности заряда плоскостей одинаковы то, согласно формуле (13)

.

Как видно из рис. 9, поля между плоскостями складываются (силовые линии направлены в одну сторону). Поэтому напряженность поля между плоскостями или

. (14)

Слева и справа от плоскостей поля вычитаются (силовые линии направлены навстречу друг другу). Поэтому здесь напряженность поля Е =0.

При проектировании электронно-лучевых трубок, конденсаторов, элек­тронных линз, фотоэлектронных умножителей и других приборов часто требу­ется знать направление вектора напряженности электростатического поля в лю­бой точке пространства, заключенного между электродами сложной формы. Аналитический расчет поля удается только при самых простых конфигурациях электродов. Поэтому сложные электростатические поля исследуются экспери­ментально (как правило, методом моделирования электростатических полей в проводящих средах).

Рис.10

 

Сущность метода состоит в следующем. Изготовляют систему электродов, форма и взаимное расположение которых воспроизводят реальный прибор в некотором масштабе. На электроды подается напряжение. При этом между ними образуется электростатическое поле.

Если пространство между электродами заполнить проводящей средой, то возникнет электрический ток. Электростатическое поле сменится полем элек­трическим, которое легче поддается опытному исследованию.

При постоянном токе идет процесс электролитической поляризации, ис­кажающей поле. Во избежание этого применяют переменный ток небольшой частоты (I =50 Гц).

Построение эквипотенциальных поверхностей в полях различной конфи­гурации в данной работе производится с помощью установки, схематически изображенной на рис. 10.

Она включает электролитическую ванну N, вольтметр, потенциометр П, ключ К и электроды Э1, Э2.







Дата добавления: 2014-11-10; просмотров: 640. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия