Построение процессов обработки воздуха в ССКВ по h-d диаграмме
Принципиальная схема одноканальной круглогодичной ССККВ и вид соответствующего цикла тепловлажностной обработки воздуха в H, d диаграмме приведены на рис.1а и 1б. ССККВ такого типа представляет собой агрегат, включающий фильтры, вентилятор, воздухонагреватели (калориферы), воздухоохладители, увлажнители, каплеотделители (элиминаторы), шумоглушительные камеры, воздушные заслонки и другое оборудование. Исследуемый тип ССККВ предусматривает полную обработку приточного воздуха в центральном кондиционере. Приточный воздух, подаваемый в кондиционируемые помещения, получается смешением рециркуляционного и наружного воздуха в соответствующей камере смешения. Летний режим работы СКВ обеспечивается холодильной установкой, в состав которой входит компрессор КМ, конденсатор КД, регенеративный теплообменник РТО, терморегулирующий вентиль ТРВ и испаритель-воздухоохладитель ВО. Компрессорные СХУ, входящие в состав СКВ, принципиально ничем не отличаются от холодильных установок, обслуживающих провизионные кладовые, но имеют значительно большую холодопроизводительность. Цикл тепловлажностной обработки воздуха в СКВ при летнем режиме кондиционирования строится в H, d диаграмме по опытным данным в такой последовательности: − по показаниям психрометра определяют положение точки Н, соответствующей наружному воздух, и определяют параметры этого воздуха (энтальпию и влагосодержание); − таким же образом определяют положение и параметры точки П (воздуха в кондиционируемых помещениях);
Рис.1. Принципиальная схема (а) и цикл тепловлажностной обработки воздуха (б) в ССККВ при летнем и зимнем режимах кондиционирования − с точки П поднимаемся вверх по d = idem на (1-3) °С в зависимости от длины воздуховодов (короткие, средние и длинные), получаем току К и определяем её параметры (рециркуляционный воздух, находящийся в коридорах, частично используемый для получения приточного воздуха в зависимости от принятой степени рециркуляции; − соединяем точки К и Н. Прямая К–Н соответствует процессу смешения наружного и рециркуляционного воздуха. Измерив температуру этой смеси воздуха перед вентилятором, проводим изотерму t А до пересечения с этой прямой. Тем самым определяем положение точки А, характеризующей параметры воздуха перед вентилятором (точка смешения наружного и рециркуляционного воздуха); − измеряем температуру воздуха за вентилятором. Если такой возможности нет, то принимаем нагрев воздуха в вентиляторе ∆ t вт = 1-3 оС в зависимости от напора (скорости) воздуха в системе, создаваемого вентилятором. Учитывая, что влагосодержание воздуха в вентиляторе не меняется, откладываем вверх по d = idem принятое значение ∆ t вт и находим точку Г, характеризующую состояние воздуха за вентилятором; точка Г может быть также найдена на пересечении линий d = idem и изотермы t г, соответствующей измеренной температуре воздуха перед вентилятором; − по результатам измерения температуры и относительной влажности воздуха на выходе из каютного воздухораспределителя, то есть воздуха, подводимого в помещение, определяем положение точки С; − известно, что при нормальном состоянии изоляции воздуховодов в зависимости от их длины нагрев воздуха в них составляет ∆ t вв = 1-3оС. Поэтому из точки С по d = idem откладываем вниз принятое значение ∆ t вв и находим точку В, соответствующую состоянию воздуха на выходе из воздухоохладителя. Точка В располагается возле кривой φ = 100 %, так как состояние воздуха после воздухоохладителя всегда близко к состоянию насыщения; − соединив точки Г и В, получаем линию Г-В – процесс тепловлажностной обработки воздуха в воздухоохладителе; − по результатам измерений параметров воздуха в помещении определяем положение точки П – фактическое состояние воздуха в помещении (в группе помещений). Соединив точки П и С, получаем процесс смешения приточного воздуха с каютным (процесс тепловлагоассимиляции); линия П – С соответствует уклону процесса тепловлагоассимиляции в помещении при летнем режиме кондиционирования ε п.л.. − определяем на H, d диаграмме положение и параметры точки П с, соответствующей санитарным нормам микроклимата для судовых помещений при летнем режиме кондиционирования и делаем вывод о микроклимате, создаваемом кондиционером в кондиционируемых помещениях: комфортном или дискомфортном [1. С.37-45]. Зимний режим работы СКВ обеспечивается двумя подогревателями и одним увлажнителем воздуха. Цикл тепловлажностной обработки воздуха в СКВ при зимнем режиме кондиционирования строится в H, d диаграмме также по опытным данным в такой последовательности: − по показаниям психрометра определяем положение точки Н', соответствующей наружному воздух, и определяем параметры этого воздуха (энтальпию H и влагосодержание d); − таким же образом определяем положение и параметры точки П' (воздуха в кондиционируемых помещениях); − из точки П´ опускаемся вниз по d = idem на (1-3) °С в зависимости от длины воздуховодов (короткие, средние и длинные), получаем току К´ и определяем её параметры (параметры рециркуляционного воздуха, поступающего в центральный кондиционер по воздуховодам); − замеряем температуру воздуха после первого воздухоподогревателя (либо задаёмся её значением от 12 до 15°С) (точка Б'); − соединяем точки К' и Б' Прямая К'– Б' соответствует процессу смешения наружного и рециркуляционного воздуха. Измерив температуру смеси перед вентилятором, проводим изотерму t с до пересечения с этой прямой. Тем самым определяем положение точки А', характеризующей параметры воздуха перед вентилятором (точка смешения наружного и рециркуляционного воздуха); − измеряем температуру воздуха за вентилятором. Если такой возможности нет, то принимаем нагрев воздуха в вентиляторе ∆ t вт = (1-3)°С в зависимости от напора (скорости) (низконапорные, средненапорные и высоконапорные) воздуха в воздуховодах, создаваемого вентилятором. Учитывая, что влагосодержание воздуха в вентиляторе не меняется, то откладываем вверх по d = idem принятое значение ∆ t вт и находим точку Г', характеризующую состояние воздуха за вентилятором (на входе воздуха во второй воздухоподогреватель). Если известна (измерена) температура воздуха после вентилятора t г’, то точка Г' находится на пересечении изотермы t г’ и линии d = idem, проведенной через точку А'; − по результатам измерения температуры и относительной влажности воздуха на выходе из каютного воздухораспределителя, то есть воздуха, подводимого в помещение, определяем положение точки С'; − известно, что при нормальном состоянии изоляции воздуховодов в зависимости от их длины охлаждение воздуха в них составляет ∆ t вв= (1-3)°С. Поэтому из точки С' по d = idem откладываем вверх принятое значение ∆ t вв и находим точку В', соответствующую состоянию воздуха на выходе из второго воздухоподогревателя. − на пересечении изотермы, проходящей через точку B' и линии d = idem, проведенной через точки А' и Г ' находим точку Д ' выход воздуха из второго воздухоподогревателя; процесс Д '- В ' увлажнение воздуха после второго воздухоподогревателя; − соединив точки П' и С', получаем процесс смешения приточного с каютным воздухом; линия П' – С' соответствует уклону процесса тепловлагоассимиляции в помещении при зимнем режиме кондиционирования ε п.з.. − определяем на H, d диаграмме положение и параметры точки П' с, соответствующей санитарным нормам микроклимата для судовых помещений при зимнем режиме кондиционирования и делаем вывод о соответствии микроклимата, создаваемого кондиционером в кондиционируемых помещениях, санитарным нормам [1. С.37-45].
|