Сведения из теории. Основной принцип выбора средств измерений в технике заключается в следующем: точность измерительного средства должна быть достаточно высокой по сравнению с
Основной принцип выбора средств измерений в технике заключается в следующем: точность измерительного средства должна быть достаточно высокой по сравнению с заданной точностью исполнения измеряемой физической величины, а трудоемкость измерений и их стоимость должны быть возможно более низкими, обеспечивающими высокую производительность труда и экономичность. Измеряемой физической величиной может быть признак качества выпускаемой продукции или параметр технологического процесса. Как для признака качества, так и для технологического параметра задают нижнюю qнм и верхнюю qнб границы допустимых значений, исходя из требуемого уровня качества. Разность границ называют допуском на неточность исполнения d = qнб - qнм, а интервал, определяющийся двумя границами - полем допуска. Объекты производства с признаками качества, выходящими за границы поля допуска, признаются негодными, т.е. браком, а значения технологических параметров, не укладывающиеся в заданные границы, являются причинами брака. Вопрос о том, какая точность измерений в каждом конкретном случае достаточна, сложен. На практике прибегают к упрощенным способам определения расчетного предела погрешности измерений D изм.д.р . Выбор средств измерений по коэффициенту уточнения. Этот способ основан на том, что точность средств измерений должна быть в несколько раз выше точности исполнения признака качества или технологического параметра. Это соотношение называется коэффициентом уточнения, или коэффициентом запаса точности: , где - половина допуска на неточность исполнения, равная половине нормативной ширины [ w ] поля рассеивания исполнения. Откуда . Коэффициент kт - характеризует отношение двух однородных величин. В исследовательской практике может возникнуть необходимость сравнения технологических процессов, различающихся либо какими-то условиями, либо аппаратурным оформлением процесса. Для обеспечения возможности такого сравнения проводят 2 серии опытов при оптимальных для каждого из испытываемых технологических процессов условиях и по полученным результатам рассчитывают средние выходы, и : ; , (2.1) где m1 и m2 - число повторений в каждой из двух серии опытов. Эти средние выходы отличаются друг от друга на величину : . (2.2) Если эта разность будет больше величины доверительной ошибки разности средних , (2.3) то можно с вероятностью Р говорить о большей эффективности одного из процессов. - является функцией дисперсий и . Основываясь на законе накопления ошибок, можно записать или , тогда . Если , то средние неоднородны. Процедура анализа однородности средних может сводиться к определению опытного значения критерия Стьюдента tоп: (2.4) и сравнению его с табличным значением [1, по Приложению А]. Если , то средние неоднородны. Оценка дисперсии единичных результатов рассчитывается по соотношениям: а) при различных mu , (2.5) где - число степеней свободы; б) при mu = m = const , (2.6) . (2.7) Однородность дисперсий проверяется по критерию Фишера: , (2.8) и сравнивается с табличным значением [1, по приложению Б]. Большинство испытаний физико-механических свойств связано с необходимостью определения размеров образцов (толщины, длины, ширины, площади), на основе результатов оценки которых рассчитываются многие показатели, регламентируемые нормативно-технической документацией. Следовательно, точность измерения может оказывать влияние на конечную оценку их физико-механических свойств. Это предопределяет необходимость обоснования выбора приборов и измерительного инструмента для измерения размеров. При выборе инструментов для определения линейных размеров образцов и деталей обуви необходимо учитывать точность, с которой они обеспечивают измерение, с одной стороны, и требование НТД к соответствующим измерениям - с другой. Недопустимым является, например, использование линейки с ценой деления 1 мм для измерения размеров с точностью до десятых долей миллиметра или использование толщиномера со шкалой, которая обеспечивает точность отсчета до 0, 1 мм для определения толщины с точностью до 0, 01 мм. При выборе приборов и измерительных инструментов для всех испытаний следует учитывать соответствие величины давлений, соотношение нагрузок, скоростей деформации и других параметров, способных оказывать влияние на получаемые результаты. Пример: Необходимо сравнить 2 установки, отличающиеся конструкцией, одна из них испытывается впервые. На первом и втором аппаратах получены следующие данные yk 1и yk 2
1. Определяем средние значения выхода процесса: , . 2. Рассчитываем оценки дисперсий единичных результатов , . 3. Определяем Р – отношение по Приложению Б находим FT (0, 95; 7; 6) = 4, 2. Так как FT > F дисперсии однородны. 4. Проверяем однородность средних 5. 6.
По приложению А, t (0, 95; 13) = 2, 16, так как ton < t (0, 95; 13), то с вероятностью Р = 0, 95 нельзя утверждать, что испытываемая конструкция имеет преимущество по сравнению со старой.
|