Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Обработка экспериментальных данных. Записываемые на осциллограмме значения давления в гидроцилиндре стрелы и углов поворота стрелы и гидроцилиндра стрелы являются случайными величинами





 

Записываемые на осциллограмме значения давления в гидроцилиндре стрелы и углов поворота стрелы и гидроцилиндра стрелы являются случайными величинами, поэтому рассчитываемые по приведенным выше формулам значения и h также явля­ются случайными величинами, между которыми необходимо устано­вить связь.

Наиболее простым способом первичного определения связи между двумя случайными величинами является способ графического изображения результатов, наблюдений. Откладывая по оси абсцисс значения одной величины, а по оси ординат - соответствующие им значения другой величины, получаем группу точек. Если между изучаемыми величинами есть связь, в расположении точек намечается некоторая закономерность. Количественная оценка этой связи выражается в математической, статистике коэффициентом корреляции и корреляционным отношением.

Коэффициент корреляции характеризует линейные корреляционные связи и определяется по формуле

,

где r - коэффициент корреляции;

Sxy - сумма произведений отклонений отдельных вариант той и другой

случайной величины от соответствующих им средних арифметических;

Sx2, Sy2 - суммы квадратов отклонений отдельных вариант от своего сред-

него арифметического.

Коэффициент корреляции колеблется по обе стороны от нуля до абсолютного максимального значения, равного единице. Чем ближе коэффициент корреляции к единице, тем больше связь между изу­чаемыми случайными величинами.

Корреляционное отношение служит количественной оценкой криволинейных корреляционных связей и вычисляется по формуле:

 

,

 

где h - корреляционное отношение;

S Y2 - сумма квадратов отклонений отдельных вариант от сред­него

арифметического;

SD2 - сумма квадратов отклонений отдельных вариант от их групповых средних, соответствующих определенным значениям другой случайной величины.

Корреляционное отношение всегда величина положительная и всегда несколько больше коэффициента корреляции, так как оно характеризу­ет «тесноту» связи вне зависимости от формы связи. При строго линейной корреляции абсолютные численные значения коэффициента корреляции и корреляционного отношения равны между собой. Способы вычисления коэффициента корреляции и корреляционного отношения описаны в специальной литературе по математической статистике, библиография которой достаточна широка.

На практике идеальные прямолинейные связи встречаются редко, все связи в той или иной мере криволинейны.

Для научного исследования и практики важно не только установить связь между величинами, но и выразить эту связь в виде уравнения, при помощи которого в дальнейшем можно было бы судить о вероятном значении одной величины по значению другой величины, не проводя каждый раз новых опытов.

Установление корреляционного уравнения сводится к определению типа уравнения и вычислению коэффициентов, входящих в это уравнение.

Тип корреляционного уравнения можно установить при графичес­ком изображении результатов в прямоугольных координатах.

Для этого берутся фиксированные значения угла b, а для вычисляются ее средние значения по трем опытам, соответствующие фиксированным значениям b. По полученным данным на графике строится ломаная линия, характер которой позволяет выб­рать в качестве типа уравнения параболу второго или высшего порядка.

Основным способом вычисления коэффициентов корреляционного уравнения является способ наименьших квадратов. Сущность этого способа заключается в том, что сумма квадратов расстояний экспериментальных точек от наиболее вероятной кривой является наименьшей.

Рассмотрим применение способа наименьших квадратов для опре­деления параметров уравнения параболы второго порядка:

 

,

где ; х = 0.

Прежде всего составим ориентировочную таблицу из трех строчек и четырех столбцов (таблица 1).

 

Таблица 1 – Ориентировочная таблица

Обозначения х2 х I у
х2 х4 х3 х2 х2у
х х3 х2 х ху
I х2 х I у

 

Если не принимать во внимание повторения, то в таблице имеется восемь разных выражений (х4, х3, х2, х, х2у, ху, у и I), из которых одно - единица, не представляющая интереса для вычислений. Остальные семь выражений необходимо вычислить для всех пяти пар эмпирических данных, чтобы иметь возможность опре­делить численные значения параметров. Все необходимые вспомогатель­ные вычисления делаем в особой расчетной таблице (таблица 2).

 

Таблица 2 - Расчетная вспомогательная таблица

№ пп х у х2 х3 х4 х2у ху
               
               
               
               
               
  å х å у å х2 å х3 å х4 å х2у å ху

После этого снова строим ориентировочную таблицу и переносим в нее из расчетной таблицы суммы соответствующих выражений (таблица 3).

 

Таблица 3 - Окончательный вид ориентировочной таблицы

 

å х4 å х3 å х2 å х2у
å х3 å х2 å х å ху
å х2 å х n å у

 

В таблице 3 n - число наблюдений, n = 5.

С помощью таблицы 3 составим уравнения для определения числовых значений параметров а, в и с:

 

;

;

.

 

Решая эти уравнения совместно, определим численные значения параметров. Искомое корреляционное уравнение получим при подстановке полученных значений параметров в уравнение параболы.

Пригодность полученного уравнения оцениваем путем сравнения экспериментальных данных с данными, вычисленными по этому уравнению (допускается разница 7-10 %). При большой разнице выбирается другой тип корреляционного уравнения.

По полученному корреляционному уравнению строится график зависимости в результате анализа, которого делается вывод о характере изменения усилия подъема одного конца дерева в зависимости от высоты подъема.

 


 

Лобанов Валерий Николаевич

 







Дата добавления: 2014-11-10; просмотров: 522. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Приложение Г: Особенности заполнение справки формы ву-45   После выполнения полного опробования тормозов, а так же после сокращенного, если предварительно на станции было произведено полное опробование тормозов состава от стационарной установки с автоматической регистрацией параметров или без...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия