Особенности квадратурной модуляции
Квадратурная модуляция принадлежит к редкому виду, когда одно несущее колебание модулируется одновременно двумя независимыми сигналами. Правда, для этого нужно предварительно «расщепить» несущее колебание на две независимые составляющие, которые имеют одинаковую частоту и сдвинуты по фазе на 90º, т.е. находятся в квадратуре и поэтому называются квадратурными составляющими. В нашем случае в роли несущего колебания выступает поднесущая f 0, а в роли независимых модулирующих сигналов – цветоразностные сигналы U 1 и U 2. Схема осуществления квадратурной модуляции приведена на рисунке 3.12. Входящие в схему балансные модуляторы БМ1 и БМ2 представляют собой аналоговые перемножители входных сигналов с фильтрами ВЧ на выходе. Рисунок 3.12 – Схема квадратурной модуляции Сигналы с выходов балансных модуляторов суммируются; в результате образуется сигнал модулированной поднесущей U S, для которого справедливо следующее очевидное выражение: (3.4) Векторная диаграмма для сигнала U S приведена на рисунке 3.13. Из этого рисунка, а также из формулы (3.4) следует, что при квадратурной модуляции поднесущая оказывается промодулированной по амплитуде и по фазе; при этом текущее значение амплитуды соответствует насыщенности, а фазы – цветовому тону, передаваемому в данный момент. Отметим логическую связь между рисунками 3.13 и 3.11. Вектор U Sm, изображенный на рисунке 3.13, соответствует зоне 1 на рисунке 3.11. Рисунок 3.13 – Векторная диаграмма сигналов при квадратурной модуляции Для разделения цветоразностных сигналов, передаваемых методом квадратурной модуляции, в телевизоре используется так называемое синхронное детектирование (рисунок 3.14). Используемые в схеме синхронные детекторы работают по принципу аналогового перемножения входных сигналов с последующей фильтрацией сигнальной (низкочастотной) компоненты с помощью фильтра нижних частот.
Рисунок 3.14 – Схема детектирования сигнала с квадратурной модуляцией Рассмотрим этот процесс на примере выделения сигнала U R-Y в синхронном детекторе СД1. Входными сигналами СД1 являются сигнал U S (см. выражение (3.4)) и одна из восстановленных квадратурных составляющих поднесущих, а именно cos ω 0 t. Произведение этих сигналов дает: (3.5) В выражении (3.5) слагаемые, выделенные скобкой, представляют собой высокочастотный продукт, возникающий после перемножения входных сигналов и задерживаемый фильтром НЧ. Таким образом, на выход СД1 проходит сигнал , что и требовалось доказать (коэффициент 1/2 принципиального значения не имеет). Аналогичным образом на выходе СД2 с точностью до постоянного множителя (1/2) формируется сигнал U B-Y. Отметим, что синхронное детектирование с геометрической точки зрения (см. рисунок 3.13) представляет собой проецирование вектора U Sm на соответствующую ось кодирования: (3.6) Для того чтобы обеспечить правильное проецирование на ось кодирования, необходимо восстановить в месте приема фазу той квадратурной составляющей поднесущей, которая модулирована детектируемым сигналом. С этой целью в состав сигнала ПЦТС вводится специальный сигнал цветовой синхронизации, представляющий собой «вспышку» поднесущей (рисунок 3.15), фаза которой соответствует отрицательному направлению оси кодирования B-Y (рисунок 3.13). Вспышка передается в каждой строке на задней площадке строчного гасящего импульса. В цветном телевизоре вспышка поднесущей выделяется из сигнала цветности U S с помощью специального стробирующего импульса (СИ-строб) и обеспечивает работу схемы восстановления поднесущей, которая показана на рисунке 3.16.
Рисунок 3.15 – Сигнал цветовой синхронизации (вспышка поднесущей) в NTSC, PAL Схема представляет собой кварцевый ГУН (генератор, управляемый напряжением), охваченный цепью ФАПЧ, содержащий импульсно-фазовый детектор (ИФД) и ФНЧ. Рисунок 3.16 – Схема восстановления поднесущей (цветовая синхронизация) NTSC, PAL Во время действия стробирующего импульса сравниваются частоты и фазы вспышки и ГУН и вырабатывается сигнал ошибки, подстраивающий фазу ГУН до значения, соответствующего оси кодирования R-Y. Вторая квадратурная составляющая sin ω 0 t формируется из первой путем фазового сдвига на 90º.
|