Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Значения коэффициентов Стьюдента





Р Число измерений (n)
                 
0, 5 0, 82 0, 77 0, 74 0, 73 0, 72 0, 71 0, 71 0, 70   0, 68
0, 7 1, 3 1, 3 1, 2 1, 2 1, 1 1, 1 1, 1 1, 1   1, 0
0, 95 4, 3 3, 2 2, 8 2, 6 2, 4 2, 4 2, 3 2, 3   2, 0

 

Как видно из табл. 1, увеличение числа измерений позволяет при заданной доверительной вероятности существенно уменьшить случайную погрешность. Здесь следует учесть, что, помимо коэффициента an, p, с ростом n уменьшается и значение Sx.

Для окончательной оценки величины абсолютной погрешности Δ Х следует теперь сравнить полученную случайную погрешность с погрешностями других видов. Если путем многократных измерений удалось сделать случайную ошибку заметно меньше приборной (при незначительных систематических ошибках), то в качестве Δ Х можно взять приборную погрешность использовавшегося прибора. В противном случае в качестве Δ X берут значение X сл или их сумму.

Таким образом, для оценки абсолютной погрешности при прямых измерениях следует:

1) произвести серию измерений искомой величины и вычислить среднее значение ;

2) вычислить абсолютные ошибки отдельных измерений по формуле

Δ Xi = | x i - |;

3) рассчитать S x;

4) определить случайную погрешность Xсл, пользуясь данными табл. 1 (или формулой Стьюдента);

5) сравнить Δ Х сл с приборной погрешностью прибора и взять в качестве абсолютной погрешности Δ Х наибольшую из этих погрешностей;

6) записать результат измерений в виде X = ± Δ Х.

Заметим, что если величины случайной и приборной погрешностей близки друг к другу, то они обе существенно влияют на точность результата, примерно в одинаковой степени. Поэтому в таком случае в качестве максимального значения абсолютной ошибки обычно берут сумму указанных погрешностей.

Величина абсолютной погрешности сама по себе дает мало информации о действительной точности измерения, если не сопос­тавлять ее со значением измеряемой величины. Измерим с погрешностью 5 г вес спичечного коробка и бутылки с молоком. Очевидно, это очень плохая точность для коробка, но избыточная для бутылки. Поэтому, помимо абсолютной погрешности, часто используется относительная погрешность измерения. Она позволяет сопоставить уровень точности измерений для объектов, отличающихся по значениям измеряемых характеристик.

Если отсчеты значений делают визуально по линейке или шкале стрелочного прибора, то показания обычно округляют до ближайшего деления шкалы (иногда до половины деления), поскольку отсчитывать на глаз доли деления неудобно и ненадежно. Если случайные ошибки невелики, все измерения после округления дадут один и тот же результат. В таких случаях обязательно следует учесть приборную погрешность.

В приборной погрешности различают погрешности отсчета по шкале и погрешности показания прибора.

Погрешность отсчета принимают равной половине деления шкалы или половине той доли деления, до которой производится округление. Приближенно можно считать, что такая погрешность соответствует доверительной вероятности a = 0, 9.

Погрешность показаний, т.е. несоответствие показаний прибора истинному значению измеряемой величины, можно определить при сравнении показаний данного прибора и более точного эталонного прибора. Эта погрешность может быть как систематической (например, неверная градуировка), так и случайной. В паспортных данных приводят максимальное значение суммарной погрешности (систематическая + случайная), которое называют предельной приборной погрешностью. Доверительная вероятность, соответствующая предельной приборной погрешности, близка к единице. Обычно принимают a = 0, 997.

Вместо предельной погрешности может быть указан класс точности прибора, из которого по известным стандартным соотношениям можно вычислить предельную погрешность. Если класс точности прибора неизвестен и нет паспортных данных, то можно использовать обычно применяемое правило градуировки: предельная погрешность равна цене деления шкалы прибора.

Оценка погрешностей при косвенных измерениях имеет некоторую особенность. При косвенных измерениях искомая физическая величина А является функцией величин Х, У, Z,..., которые были получены с помощью прямых измерений. Результат косвенного измерения записывается в виде

А ± Δ А,

где A = ƒ (X, Y, Z, …) - значение искомой величины, рассчитанное по средним значениям параметров X, Y, Z,..., каждый из которых измеряется по нескольку раз; Δ А - абсолютная погрешность косвенного измерения, зависящая от погрешностей измерения параметров X, Y, Z,... (т.е. от Δ Х, Δ Y, Δ Z,...).

В простейших случаях абсолютную и относительную погрешность косвенных измерений подсчитать нетрудно. Рассмотрим несколько примеров.

Пусть А = Х + Y. Если известны погрешности Δ X и Δ Y, то

А ± Δ А = (X ± ∆ X) + (Y ± ∆ Y).

Максимальное значение погрешности равно при этом Δ А = Δ X+ + Δ Y.

Такой же будет максимальная абсолютная погрешность, если А = XY.

Отсюда следует, что относительные погрешности величин, являющихся суммой или разностью двух параметров, равны соответственно:

и .

Пусть теперь искомая величина есть произведение A = X Y.

Тогда

.

Обычно последнее слагаемое Δ X ∙ Δ Y этой формулы значительно меньше остальных и им можно пренебречь. Тогда:

или .

 

Для случая, когда A = X / Y, получим

.

При этом максимальное значение погрешности Δ А получится, если погрешности в числителе и в знаменателе взять с разными знаками. Тогда можно записать:

.

 

При выводе последней формулы мы пренебрегли членами (Δ Y)2 и Δ X Δ Y. Максимальная абсолютная погрешность в этом случае равна примерно

,

 

а относительная погрешность

.

 

Полученные результаты легко обобщаются на произвольное количество сомножителей. Если в самом общем случае

,

где С - постоянный коэффициент, а α, β, γ,... - любые целые или дробные числа, то относительную погрешность косвенного измерения величины А можно записать в виде

.


ПРИЛОЖЕНИЕ 3







Дата добавления: 2014-11-10; просмотров: 740. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия