Построение математической модели задачи
Процесс построения экономико-математической модели задачи (т.е. запись ее с помощью математических символов) начинается с разбора описанной в условии экономической ситуации. Для этого необходимо, с точки зрения экономики, а не математики, ответить на следующие вопросы: 1) что является искомыми величинами задачи? 2) какова цель решения? Какой параметр задачи служит критерием эффективности (оптимальности) решения, например прибыль, себестоимость, время и т.д. В каком направлении должно изменяться значение этого параметра (к максимуму или к минимуму) для достижения наилучших результатов? 3) какие условия в отношении искомых величин и ресурсов задачи должны быть выполнены? Эти условия устанавливают как должны соотноситься друг с другом различные параметры задачи, например, количество ресурса, затраченного при производстве, и его запас на складе; количество выпускаемой продукции и емкость склада, где она будет храниться; количество выпускаемой продукции и рыночный спрос на эту продукцию и т.д. Искомые величины являются переменными задачи, которые, как правило, обозначаются малыми латинскими буквами с индексами. Например, однотипные переменные удобно представлять в виде . Цель решения записывается в виде целевой функции, обозначаемой . Математическая формула целевой функции отражает способ расчета значений параметра - критерия эффективности задачи. Условия, налагаемые на переменные и ресурсы задачи, записываются в виде системы равенств или неравенств, т.е. ограничений. Левые и правые части ограничений отражают способ получения (расчет или численные значения, взятые из условия) значений тех параметров задачи, на которые были наложены соответствующие условия. В процессе записи математической модели необходимо указывать единицы измерения переменных задачи, целевой функции и всех ограничений. Следует всегда проверять размерность параметров левой и правой части каждого из ограничений, поскольку их несовпадение свидетельствует о принципиальной ошибке при составлении ограничений. Рассмотрим процесс построения моделей задач линейного программирования на примерах функционирования экономических объектов. Пример 1. Задача производственного планирования (задача об использовании ресурсов). Коммерческому отделу поручили проанализировать совместную деятельность подразделений фабрики по изготовлению и продаже двух видов продукции Р1 и Р2. Для производства продукции используют два вида сырья: А и В, максимально возможные суточные запасы которых составляют 3 и 4 т соответственно. Расход сырья на производство 1 т продукции приведен в таблице 2.1. Изучение конъюнктуры спроса на рынке сбыта показало, что суточный спрос на продукцию Р2 никогда не превышал спроса на продукцию Р1 более чем на 1, 5 т, а спрос на продукцию Р2 не превышал 2 т в сутки. Таблица 2.1
Какое количество продукции каждого вида необходимо производить предприятию, чтобы доход от ее реализации был максимальным? Цена 1 т продукции Р1 - 20 тыс. руб., продукции Р2 - 30 тыс. руб. Решение: Построим модель задачи, используя представленную выше методику. 1. Переменные задачи. В задаче требуется установить, сколько продукции каждого вида надо производить, поэтому искомыми величинами, а значит, и переменными задачи являются суточные объемы производства каждого вида продукции: x1 - суточный объем производства продукции Р1 (т/сутки); х2 - суточный объем производства продукции Р2 (т/сутки). 2. Целевая функция. В условии задачи сформулирована цель - добиться максимального дохода от реализации продукции, т.е. критерием эффективности служит параметр суточного дохода, который должен стремиться к максимуму. Чтобы рассчитать величину суточного дохода от продажи продукции обоих видов, необходимо знать объемы производства, т.е. x1 и х2 т продукции в сутки, а также цены на продукцию Р1 и Р2 - согласно условию 20 и 30 тыс. руб. за 1 т продукции соответственно. Таким образом, доход от продажи суточного объема производства продукции Р1 равен 20 х1 тыс. руб. в сутки, а от продажи продукции Р2 - 30 х2 тыс. руб. в сутки. Поэтому запишем целевую функцию в виде суммы дохода от продажи продукции Р1 и Р2. (тыс. руб./сутки). 3. Ограничения. Возможные объемы производства продукции х1 и х2 ограничиваются следующими условиями: - количество сырья А и В, израсходованного в течение суток на производство продукции обоих видов, не может превышать суточного запаса этих ингредиентов на складе; - согласно результатам изучения рыночного спроса суточный объем производства продукции Р2 может превышать объем производства продукции Р1 не более чем на 1, 5 т, а спрос на продукцию Р2 никогда не превышал 2 т в сутки; - объем производства продукции не может быть выражен отрицательными значениями. Запишем эти ограничения в математической форме. Ограничение по расходу сырья А имеет вид: (т/сутки). Левая часть ограничения - это расчет суточного расхода ресурса А на производство продукции обоих видов. Расход сырья А на производство 1 т продукции Р1 - 0, 5 т; на производство 1 т продукции Р2 - 1 т. Тогда на производство х1 т продукции Р1 и х2 т продукции Р2 потребуется (0, 5 х1 + l x2) т сырья А. Правая часть ограничения - это величина суточного запаса сырья на складе - 3 т. Аналогична запись ограничения по расходу сырья В: (т/сутки). Ограничение по суточному объему производства продукции Р1 по сравнению с объемом производства продукции Р2 имеет вид: (т/сутки). Ограничение по суточному объему производства продукции Р2: (т/сутки). Неотрицательность объемов производства задается как Таким образом, математическая модель задачи имеет вид: ; (2.4)
(2.5)
Экономико-математическая модель задачи состоит в том, чтобы найти такой план производства продукции , удовлетворяющий системе ограничений (2.5), при котором целевая функция (2.4) принимает максимальное значение. Пример 2. Задача о составлении рациона (задача о диете). Для осуществления жизнедеятельности человеку среднего возраста ежедневно необходимо потреблять 118 г белков, 56 г жиров, 500 г углеводов, 8 г минеральных солей. Количество питательных веществ, содержащихся в 1 кг продукта, а также стоимость этих продуктов в магазине приведены в таблице 2.2. Таблица 2.2
Требуется составить суточный рацион, содержащий не менее указанного количества необходимых питательных веществ и обеспечивающий минимальную стоимость закупаемых продуктов. Решение. Построим экономико-математическую модель задачи. 1. Искомыми величинами в задаче является количество покупаемого каждого вида продукта, входящего в суточный рацион человека (мясо, рыба, масло, картофель, сыр, крупа), поэтому переменными задачи выступают: х1 - количество мяса, кг/сутки; х2 - количество рыбы, кг/сутки; х3 - количество масла, кг/сутки; х4 - количество картофеля, кг/сутки; х5 - количество сыра, кг/сутки; х6 - количество крупы, кг/сутки. 2. Цель в задаче - обеспечение минимальной общей стоимости закупаемых продуктов. Тогда целевая функция выглядит так: . 3. Возможный суточный рацион человека ограничивается двумя группами условий: расходом питательных веществ; неотрицательностью количества продуктов, входящих в рацион. Запишем эти ограничения в математической форме. Ограничение 1) по количеству белков, г: ; 2) по количеству жиров, г ; 3) по количеству углеводов, г ; 4) по количеству минеральных солей, г ; 5) неотрицательности переменных, кг Таким образом, математическая модель задачи имеет вид: (2.6) , , , (2.7) , Экономико-математическая модель задачи заключается в следующем: составить такой суточный рацион , удовлетворяющий системе ограничений (2.7), и при котором целевая функция (2.6) принимает минимальное значение.
|