Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Двойственные задачи линейного программирования





Пример 5. Для примера 4 составить двойственную задачу. Оценить дефицитность каждого вида ресурсов, используемых для производства продукции. Оценки, приписываемые каждому виду ресурсов, должны быть такими, чтобы оценка всех используемых ресурсов была минимальной, а суммарная оценка ресурсов на производство единицы продукции каждого вида - не меньше цены единицы продукции данного вида.

Решение. Обозначим через y1 - двойственную оценку дефицитности трудовых ресурсов, через y2 – ресурсов сырья, y3 - оборудования. Тогда прямая и двойственная задачи формулируются:

прямая задача

двойственная задача

Решение прямой задачи дает оптимальный план производства продукции П1, П2, П3, П4, а решение двойственной задачи - оптимальную систему оценок ресурсов, используемых для производства этой продукции:

Двойственные оценки ресурсов yi * – это оценочные коэффициенты Dj дополнительных переменных х5, х6, х7 в последней симплексной таблице (таблица 2.9).

Исходя из анализа оптимальных двойственных оценок, можно сделать следующие выводы.

Трудовые ресурсы и оборудование используются полностью. Полному использованию этих ресурсов соответствуют полученные оптимальные оценки y1, y3, отличные от нуля. Значит, ресурсы сырья недоиспользуются (на х6 =26 ед.).

Увеличение количества трудовых ресурсов на 1 ед. приведет к тому, что появится возможность найти новый оптимальный план производства продукции, при котором общая прибыль возрастет на 20 д. е. и станет равной 1320 + 20 = 1340 д. е. Анализ полученных оптимальных значений новой прямой задачи показывает, что это увеличение общей прибыли достигается за счет увеличения производства продукции П1 на 1, 67 ед. (5/3) и сокращения выпуска продукции П3 на 0, 67 ед. (2/3) (таблица 2.9). Вследствие этого использование ресурса сырья увеличивается на 7, 33 ед. (22/3).

Точно так же увеличение на 1 ед. количества оборудования позволит перейти к новому оптимальному плану производства, при котором прибыль возрастет на 10 д. е. и составит 1330 д. е., что достигается за счет уменьшения выпуска продукции П1 на 0, 17 ед. и увеличения выпуска продукции П3 на 0, 17 ед., причем объем используемого ресурса сырья уменьшается на 0, 33 ед.

При подстановке оптимальных двойственных оценок в систему ограничений двойственной задачи получаем:

Второе и четвертое ограничения выполняются как строгие неравенства, т. е. двойственные оценки всех ресурсов на производство единицы продукции П2 и П4 выше цены этих видов продукции и, следовательно, выпускать их невыгодно. Их производство и не предусмотрено оптимальным планом прямой задачи.

2.4. Симплексный метод с искусственным базисом
(М-метод)

Пример 6. Решить задачу линейного программирования:

Домножив неравенство на (-1), получим: .

Приведем задачу к каноническому виду, перейдя к задаче на максимум:

Для нахождения исходного опорного плана переходим к М-задаче:

Дальнейшее решение проводим в симплексных таблицах (таблица 2.10).

Таблица 2.10

ci БП - 10         - M - M bi
x1 x2 x3 x4 x5 z1 z2
- M z1   - 1 - 1          
- M z2       - 1        
  x5 - 1 - 2            
  Dj -3M+10 - 5 M M       - 5M
- 10 х1   -1/2 -1/2         3/2
- M z2   3/2 1/2 -1       1/2
  x5   -5/2 -1/2         5/2
  Dj   -3М/2 -М/2+5 М       -М/2-15
- 10 х1     -1/3 -1/3       5/3
- 5 х2     1/3 -2/3       1/3
  x5       -5/3       10/3
  Dj               -15

В третьей симплекс-таблице получен опорный план исходной задачи ЛП.

Поскольку все оценки , то это решение является и оптимальным, т.е. х1 =5/3, х2 =1/3 (основные переменные), х3 =0, х4 =0, х5 =10/3 (дополнительные переменные), при этом

 







Дата добавления: 2014-11-10; просмотров: 789. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Studopedia.info - Студопедия - 2014-2025 год . (0.015 сек.) русская версия | украинская версия