Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Группировка первичных результатов психологического исследования





Классы группировки Границы классов Точные границы классов Центры классов (Х1) Первичные распределения Частота встречаемости (¦)
  55-59 50-54 45-49 40-44 35-39 30-34 25-29 20-24 15-19 10-14 54, 5-59, 5 49, 5-54, 5 44, 5-49, 5 39, 5-44, 5 34, -39, 5 29, 5-34, 5 24, 5-29, 5 19, 5-24, 5 14, 5-19, 5 9, 5-14, 5      

å ¦ = 50

 

Рассмотрим более подробно каждую из граф табл. 1.1.4. В 1-й графе указывают число классов группировки. Классу, содержащему минимальные величины массива первичных данных, присваивают номер 1, последующим - последующие порядковые номера до п классов. Во 2-й графе указывают, каким образом определены классы группировки. А именно: на основе числа 5 как характеристики ширины класса было образовано 10 классов группировки (10-й класс: 59, 58, 57, 56, 55; 9-й класс: 54, 53, 52, 51, 50 и т. д.).

Мы помним, что в данном случае рассматриваем не дискретно, а непрерывно распределенные величины, и поэтому целесообразно ликвидировать возникшую разрывность между ними. В качестве первого шага на этом пути необходимо определить точные границы классов группировки (3-я графа). Исходя из того что величины в интервале между более высоким и более низким классами группировки распределены равномерно, каждая из точных границ классов может быть определена значением средней арифметической величины между верхней границей более низкого класса и нижней границей более высокого класса. В качестве второго шага с целью ликвидации разрывности данных следует рассчитать центральные значения классов Хi. Они соответствуют средней арифметической величине между нижней и верхней границами классов и указаны в 4-й графе таблицы. Сравнивая верхнюю границу предшествующего класса группировки с нижней границей последующего класса, можно видеть, что дискретность в ряду исчезла и, следовательно, ряд величин стал непрерывным.

Таким образом, первые графы таблицы служат основанием для группировки первичных результатов. В дальнейшем будет видно, что они совершенно необходимы также для расчета ряда статистических показателей. Характер распределения первичных результатов показан в 5-й графе, а частота встречаемости (f) - в 6-й.

В некоторых случаях результаты исследования полезно представить графически, в виде кривой так называемых накопленных частот (fcum), а также в виде процентной суммы этих частот. Чтобы показать, как это делают, обратимся снова к данным табл. 1.1.4 и воспроизведем из нее графы 3-ю и 6-ю в табл. 1.1.5. Из таблицы видно, что величины накопленных частот (4-я графа) получают путем последовательного суммирования (снизу вверх) исходного распределения частот (3-я графа). Процентную сумму накопленных частот получают, разделив значение каждой накопленной частоты на общее число данных (в нашем примере оно было равно 50) и умножив частное на 100. Необходимо при этом помнить, что процентная сумма накопленных частот в каждом классе группировки относится к верхней границе данного класса. Это означает, что ниже, например, границы 5-го класса находится 35, или 70%, случаев всех наблюдений. Гистограмму и ход кривой накопленных частот, а также суммы накопленных частот можно представить графически (рис. 1.1.6).

Таблица 1.1.5







Дата добавления: 2014-11-10; просмотров: 652. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия