Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Имитационное моделирование





В определенные моменты функционирования большинства систем возникает необходимость их исследования с целью получения представления о внутренних отношениях между их компонентами или вычисления их производительности в новых условиях эксплуатации. Различные способы исследования системы показаны на рис. 5.1.

Ниже приведена сравнительная характеристика этих способов.

§ Эксперимент с реальной системой или с моделью системы. При наличии возможности физически изменить систему (если это рентабельно) и запустить ее в действие в новых условиях лучше всего поступить именно так, поскольку в этом случае вопрос об адекватности полученного результата исчезает сам собой. Однако часто такой подход неосуществим либо из-за слишком больших затрат на его осуществление, либо в силу разрушительного воздействия на саму систему. Например, в банке ищут способы снижения расходов, и с этой целью предлагается уменьшить число кассиров. Если опробовать в действии новую систему — с меньшим числом кассиров, это может привести к длительным задержкам в обслуживании посетителей и их отказу от услуг банка. Более того, система может и не существовать на самом деле, но мы хотим изучить различные ее конфигурации, чтобы выбрать наиболее эффективный способ её построения. Примерами таких систем могут служить сети связи или стратегические системы ядерных вооружений. Поэтому необходимо создать модель, представляющую систему, и исследовать ее как заменитель реальной системы. При использовании модели всегда возникает вопрос её адекватности — действительно ли она в такой степени точно отражает реальную систему, чтобы можно было принять решение, основываясь на результатах исследования.

Рис. 5.1. Способы исследования систем

§ Физическая модель или математическая модель. При слове «модель» большинство из нас представляет себе так называемые тренажёры ‑ кабины, установленные вне самолетов на тренировочных площадках и применяемые для обучения пилотов, либо уменьшенные макеты ‑ миниатюрные супертанкеры, движущиеся в бассейне. Это все примеры физических моделей (именуемых также тоническими или образными). Они редко используются при исследова-нии операций или анализе систем. Но в некоторых случаях создание физических моделей может оказаться весьма эффективным при исследовании технических систем или систем управления. Примерами могут служить масштабные модели погрузочно-разгрузочных систем. Однако преобладающее большинство создаваемых моделей являются математическими. Они представляют систему с помощью логических и количественных отношений, которые затем подвергаются обработке и изменениям, чтобы определить, как система реагирует на изменения, точнее — как бы она реагировала, если бы существовала на самом деле. Наверное, самым простым примером математической модели является известное соотношение равномерного прямолинейного движения
s = vt, где s ‑ расстояние, v – скорость перемещения, t ‑ время перемещения. Иногда такая модель может быть и адекватна (например, в случае с космическим зондом, направленным к другой планете, по достижении им скорости полета), но в других ситуациях она может не соответствовать действительности (например, транспортное движение в часы пик на городской перегруженной автостраде).

§ Аналитическое решение или имитационное моделирование. Чтобы ответить на вопросы о системе, которую представляет математическая модель, следует установить, как эту модель можно построить. Когда модель достаточно проста, можно вычислить ее соотношения и параметры и получить точное аналитическое решение. Если в примере с формулой s = vt известны расстояние, на которое перемещается объект, и его скорость, то время, необходимое для перемещения, рассчитывается из соотношения t = s/v. Это простое аналитическое решение, к которому мы приходим с помощью ручки и бумаги. Однако некоторые аналитические решения могут быть чрезвычайно сложными и требовать при этом огромных компьютерных ресурсов. Обращение большой неразреженной (с полностью заполненными ячейками) или разреженной (с большим числом пустых ячеек) матрицы является примером ситуации, когда, в принципе, существует известная аналитическая формула, но получить численный результат не так просто, и требует значительных затрат вычислительных ресурсов. Если, как в случае с математической моделью, возможно аналитическое решение, и его вычисление представляется эффективным, ‑ лучше исследовать модель именно таким образом, не прибегая к машинному моделированию. Однако многие системы чрезвычайно сложны, они практически полностью исключают возможность аналитического решения. В этом случае модель следует изучать с помощью имитационного моделирования на ЭВМ, то есть многократного испытания модели с нужными входными данными, чтобы определить их влияние на выходные критерии оценки работы системы.

Имитационные модели позволяют достаточно просто учитывать такие факторы, как

- наличие дискретных и непрерывных элементов, нелинейные характеристики элементов системы,

- многочисленные случайные и другиевоздействия, которые часто создают трудности при аналитических исследованиях.

В настоящее время имитационное моделирование ‑ наиболее эффективный метод исследования систем, а часто и единственный практически доступный метод получения информации о поведении системы, особенно на этапе ее проектирования.







Дата добавления: 2014-11-12; просмотров: 957. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия