Противоречащими (контрадикторными) являются суждения Аи О, Е и I, которые одновременно не могут быть ни истинными, ни ложными
Для противоречия характерна строгая, или альтернативная несовместимость: при истинности одного из суждений другое всегда будет ложным; при ложности первого второе будет истинным. Отношения между такими суждениями регулируются законом исключенного третьего. Если А признается истинным, то О будет ложным (А-Л О); при истинности Е будет ложным I (Е-Л I). И наоборот: при ложности А будет истинным О (1 А-Ю); а при ложности Е будет истинным I (~\ Е—> 1). Например, если признается истинным суждение «Все принципиальные люди признают свои ошибки», то ложным будет ему альтернативное: «Некоторые принципиальные люди не признают своих ошибок». Следует отметить, что несовместимые единичные суждения могут находиться лишь в отношении противоречия и не могут находиться в отношении противоположности, ибо каждому отдельному предмету может быть либо присущ, либо не присущ определенный признак. Например, суждения «Суд вынес обвинительный приговор по делу Л.» и «Суд не вынес обвинительного при-fc говора по делу Л.» находятся в отношении противоречия: если первое суждение истинно, то признается ложность второго, и наоборот. Сложные суждения Сложные суждения также могут быть сравнимыми и несравнимыми. Несравнимые — это суждения, которые не имеют общих пропозициональных переменных. Например, р a q и m л п. Сравнимые — это суждения, которые имеют одинаковые пропо-зиционные переменные (составляющие) и различаются логическими связками, включая отрицание. Например, сравнимыми являются следующие два суждения: «Норвегия или Швеция имеют выход в Балтийское море» (р v q); «Ни Норвегия, ни Швеция не имеют выхода в Балтийское море» (1 р л 1 q). Хотя эти суждения различны по логической форме (первое из них — дизъюнктивное суждение, а второе — конъюнкция отрицаний, вместе с тем они сравнимы, поскольку включают одинаковые составляющие (р и q). Сравнимы; [ также следующие пары суждений: 1) p-> q H" lpvq; 2)'lrASH Ч 1 (г л s); 3)1 m л 1 п и 1 (m д п). Наличие в каждой паре общих пере- s' менных позволяет сопоставлять их по смыслу и устанавливать истин- i; ность отношения. |i| Сложные сравнимые суждения могут быть совместимыми ине- || совместимыми. Отношение совместимости. К совместимым относятся такие сравнимые суждения, которые одновременно могут быть истинными. Как и в случае простых суждений, различают три вида совместимости сложных суждений: эквивалентность, частичная совместимость и подчинение. 1. Эквивалентные — это суждения, которые принимают одни и те значения, т.е. одновременно являются либо истинными, либо ложными. На таблице (рис. 38) показано эквивалентное отношение между сложными суждениями: А и В — схемы суждений; знак (5)— отношение эквивалентности.
Рис.38 Рис. 39 Рис.40 1-я и 4-я строки таблицы показывают, что А и В одновременно принимают одинаковые значения — И и Л; зачеркнутые 2-я и 3-я строки показывают, что эквивалентные суждения одновременно не могут принимать различные значения. Отношение эквивалентности позволяет выражать одни сложные суждения через другие — конъюнкцию через дизъюнкцию или импликацию, и наоборот. Приведем четыре известные эквивалентности, которые являются законами логики. 1) Выражение конъюнкции через дизъюнкцию: -1(АлВ)(3) " lAvlB 2) Выражение дизъюнкции через конъюнкцию: -1 (A v В) < 3) -1 А л 1 В Эти две эквивалентности называются законами де Моргана. 3) Выражение импликации через конъюнкцию: 1 (А -> В) (5) (А л -1 В) 4) Выражение импликации через дизъюнкцию: А-> В(Э " lAvB 2. Частичная совместимость характерна для суждений, которые могут быть одновременно истинными, но не могут быть одновременно ложными. Отношение частичной совместимости для сложных суждений показано на таблице (рис. 39), где А и В — схемы сложных суждений; © — знак частичной совместимости. 1-я строка таблицы говорит об одновременной истинности А и В; 2-я и 3-я — несовпадение значений; 4-я строка зачеркнута, поскольку исключается одновременная ложность А и В. 3. Подчинение между суждениями имеет место в том случае, когда при истинности подчиняющего подчиненное всегда будет истинным. На таблице (рис. 40) показано отношение подчинения между сложными суждениями: А и В — схемы суждений; Q> — знак подчинения. 1-я строка показывает, что в случае истинности А истинным является и В. В 3-й и 4-й строках А является ложным, а В принимает произвольные значения. 2-я строка в таблице зачеркнута, поскольку отношение подчинения исключает ложность подчиненного В при истинности подчиняющего А. Отношение логического подчинения, позволяющее по истинности подчиняющего суждения определить истинность подчиненного, составляет основу фундаментального в науке логики понятия логического следования, регулирующего все виды рассуждений.
|