Упражнения. ?шение. Пусть ось вращения конуса перпендикулярна плоскости П1, а грани призмы перпендикулярны плоскости П2.
10.1.3 Построить проекции линии пересечения конуса вращения с гранями проецирующей призмы. Записать, какие линии получаются в пересечении на гранях: Задачи 10.2.1 Построить проекции линии пересечения конуса вращения с цилиндром вращения.
10.2.3 Построить проекции линии пересечения проецирующей призмы с цилиндром вращения Примеры решения задач: Задача1. Построить линию пересечения треугольной призмы с конусом. Решение. Пусть ось вращения конуса перпендикулярна плоскости П 1, а грани призмы перпендикулярны плоскости П 2.
В этом случае призму можно рассматривать, как три плоскости α, β, γ, проходящие через ее грани, а задача сводится к нахождению линий пересечения этих плоскостей с конусом. При этом в соответствии с характерными сечениями конуса известно, что плоскость α пересекает конус по окружности параллельной П 1, β - по гиперболе параллельной П 3, а γ - по эллипсу. На плоскость П 2 линии пересечения от всех плоскостей проецируются в прямые, совпадающие со следами плоскостей α, β, и γ. Для построения проекций этих линий на плоскости П 1 и П 3 отметим характерные точки, на уже имеющейся фронтальной проекции линий пересечения: точки 1 и 6 – пересечения плоскости γ с очерком проекции конуса на плоскость П 2 (главным меридианом), эти точки определяют положение большой оси эллипса, кроме того точка 12 –проекция точки вершины гиперболы и одновременно принадлежит конусу (лежит на очерке фронтальной проекции конуса) и ребру призмы (линии пересечения плоскостей α и β), а точка 62 - проекция точки, одновременно принадлежащей конусу и ребру призмы (линии пересечения плоскостей α и γ); точки 2, 3, 7 и 8 – характерны тем, что их профильные проекции лежат на очерке проекции конуса; 4, 5 - точки, лежащие на середине отрезка [1, 6] (большой оси эллипса) и определяют положение малой оси эллипса; точки 9, 10 – одновременно принадлежащие конусу и ребру призмы (образованному пересечением плоскостей α и β). Рассмотрим последовательность нахождения проекций точек 4 и 5. Через фронтальные проекции этих точек проведем вспомогательную секущую плоскость φ. Эта плоскость пересекает конус по параллели p, а грань призмы по прямой линии m, параллельной ребру. На горизонтальной плоскости проекций пересечение p 1 и m 1 определяют положение точек 41 и 51. Для точного построения кривых линий пересечения поверхностей обозначенных точек не достаточно. После нахождения проекций всех точек их необходимо соединить с учетом видимости. Задача 2. Построить линию пересечения полусферы и эллиптического цилиндра. Решение. Вспомогательные плоскости уровня могут быть параллельными плоскостям П 2 и П 1. В первом случае фронтальные плоскости пересекают сферу по окружности, а цилиндр по прямолинейным образующим. Одна из таких плоскостей α пересекается с поверхностями по дуге окружности a и прямой линии b. Точка 1 пересечения дуги окружности а и прямой b принадлежат искомой кривой.
С помощью вспомогательной секущей плоскости β (плоскости главного фронтального меридиана полусферы) найдены точки 2 и 3, как точки пересечения главного фронтального меридиана полусферы - дуги окружности с линиями d и g. Плоскость γ - плоскость главного фронтального меридиана цилиндра, пересекает полусферу по дуге окружности - k, которая в свою очередь пересекаясь с фронтальным меридианом цилиндра l и m определяет положение точек 4 и 5. Аналогично, с помощью плоскости j найдены точки 6 и 7. Точка 8 найдена с помощью фронтально проецирующей плоскости ω, параллельной горизонтальной плоскости проекций, которая пересекает полусферу по окружности - экватору h, а цилиндр по окружности основания s. Характерными точками, в данном случае, являются точки 1- 5 и 8, лежащие на очерках проекций поверхностей. Кроме того, точки 1 и 8 определяют границу зоны видимости кривой на плоскость П1, а точки 4 и 5 – границу зоны видимости на плоскость П2.
|