Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Упражнения.





7.1.3 Определить натуральную величину отрезка АВ и углы его наклона к плоскости проекций П1 и П2. Даны координаты: А(80, 10, 15); В(30, 40, 25). а) решить задачу заменой плоскостей проекций б) решить задачу плоскопараллельным движением; в) решить вращением вокруг проецирующей прямой 7.1.4 Определить натуральную величину треугольника АВС, лежащего в плоскости S(S2).
7.1.1 Построить проекции точек А и В в новой системе П14. 7.1.2 Отрезок прямой АВ преобразованием чертежа поставить в положение проецирующего.

Задачи

7.2.1 Определить расстояние от точки М до плоскости β (АВС). 7.2.2 Дана фронтальная проекция точки А, удаленной от плоскости S (f ∩ h) на 20мм. Построить горизонтальную проекцию точки А.
7.2.3 Построить проекции (К1, К2) точки К пересечения прямой l с плоскостью S(ABC). Определить видимость прямой l на плоскостях П1 и П2. 7.2.7 Построить горизонтальную проекцию грани АВD двугранного угла, если угол при ребре АВ равен 30º.
7.2.5 Определить расстояние от вершины S пирамиды SABC до ее основания ABC. Построить проекции высоты пирамиды на плоскостях П1 и П2. 7.2.6 Построить проекции (М1N1, М2, N2) отрезка МN, определяющего расстояние между прямыми АВ и СD.  
       

7.2.4 Построить проекции D1E1, D2E2 отрезка DE, определяющего расстояние между параллельными плоскостями S(ABC) и Q(mXn). Определить угол наклона S и Q к плоскости проекций П1.

Примеры решения задач:

Задача 1 Отрезок прямой общего положения АВ преобразовать в горизонтально проецирующую прямую. Решить способом замены плоскостей проекций.

Решение. На первом этапе заменим фронтальную плоскость П 2 проекций на новую П 4 так, чтобы прямая (АВ) стала фронталью. Поэтому выбираем х 1║ (A1B1). Ось проекций х старой системы выбираем так, чтобы было меньше дополнительных построений. Строим новую фронтальную проекцию (А4 В4) прямой линии. Решена первая задача.

На втором этапе решения новую горизонтальную плоскость П5 выбираем так, чтобы прямая линия (АВ) стала горизонтально проецирующей. У такой прямой ось х4, 5 проекций должна быть перпендикулярна фронтальной проекции (А 4В 4). По линии связи откладываем координату у заменяемой проекции и получаем А5 5 - горизонтальную проекцию горизонтально проецирующей прямой (АВ).

 

Задача 2 Плоскость Σ общего положения преобразовать в горизонтальную плоскость уровня. Решить способом замены плоскостей проекций.

Решение. На первом этапе ее решения заменим фронтальную плоскость П2 проекций на новую П4 так, чтобы плоскость Σ стала фронтально проецирующей. Для этого в плоскости Σ построим произвольную горизонталь и выберем старую ось х1, 2 проекций. В примере ось х1, 2 выбрана произвольно, но можно ее выбрать, например, совпадающей с h2 . строим , тогда прямая h(h1 h4) в системе становится фронтально проецирующей и плоскость Σ (h, С) тоже стала фронтально проецирующей.

На втором этапе заменяем горизонтальную проекцию. Выбираем новую ось х4, 5 так, чтобы она совпала с фронтальной проекцией Σ 4 плоскости Σ

.

Строим новую горизонтальную проекцию, откладывая по линиям связи координаты: Проводим прямые а5 и b5.. плоскость Σ стала горизонтальной плоскостью уровня

Задача 3 Отрезок прямой общего положения АВ преобразовать в горизонтально проецирующую прямую. Решить способом плоскопараллельного перемещения.

Решение. При плоскопараллельном перемещении объекта [AB] относительно горизонтальной плоскости проекций все его точки (А и В) движутся в горизонтальных плоскостях уровня. Это значит, что отрезок [AB] может перемещаться в любое положение, но фронтальные проекции А2 и В2 его концов могут перемещаться только по проекциям горизонтальных плоскостей уровня., линии которых одновременно служат горизонтальными линиями связи.

Заметим, что, выбирая положение свободно перемещаемой проекции, мы сможем сближать или раздвигать новые проекции и изображать их справа или слева от старых проекций на любом удалении.

На первом этапе прямую линию [AB] мы переместили до положения фронтали, где , а затем до положения

горизонтально проецирующей прямой, где и или . Выбирая положения и , управляем размещением новых проекций

Задача 4 Плоскость Γ общего положения преобразовать в горизонтальную плоскость уровня. Решить способом плоскопараллельного перемещения.

Решение. Построим в плоскости (АВС) горизонталь и перемесим треугольник относительно горизонтальной плоскости проекций так, чтобы прямая стала фронтально проецирующей прямой. Для этого строим в выбранном месте прямую и в любом месте отмечаем точку, например , от которой откладываем отрезок . На этом отрезке строим так, чтобы обход вершин обоих треугольников выполнялся в одном направлении. Проводим дуги окружностей из точки радиусом , а из точки радиусом и в пересечении построенных дуг отмечаем точку с учетом направления обхода вершин.

Проводим прямую и на ней откладываем отрезок . Соединяем вершину А с вершинами и . По линиям связи строим новую фронтальную проекцию и . Фигура стала фронтально проецирующей. Перемещая фигуру относительно фронтальной плоскости проекций до положения , мы преобразуем заданную плоскость в горизонтальную плоскость уровня.

Горизонтальная проекция определится в пересечении линий связи и . Возвращение к старым проекциям производится в обратном порядке.







Дата добавления: 2014-11-12; просмотров: 1156. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия