Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Постановка задачи.


 

 

Аудитории № аудитории Оборудование Количество (шт.)
  Учебные Лекционные   24т Компьютер с Microsoft Office и мультимедийным проектором, доска с экраном  
Для практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, курсового проектирования   24т   Компьютер с Microsoft Office и мультимедийным проектором, доска с экраном  
Лингафонный кабинет*      
Лаборатории      
Для самостоятельной работы (доступ к Интернету и ЭБС) Компьютерный класс 22т Microsoft Office 2007  
Библиотека   garant  
  Internet Экран  
Помещения для хранения и обслуживания учебного оборудования        
       
       

 

* для дисциплины «Иностранный язык»

 


 

Работа М4

Измерение моментов инерции твердых тел в

Форме диска и тонких колец с помощью

Маятника Максвелла.

Цель работы:Изучение закона сохранения и превращения механической энергии маятника Максвелла, совершающего сложное движение, и измерение с его помощью моментов инерции твердых тел правильной геометрической формы.

Приборы и принадлежности: Маятник Максвелла с автоматической системой отсчета времени, набор колец с различной массой, штангенциркуль.

Постановка задачи.

Любое сложное движение абсолютно твердого тела можно представить в виде суммы двух простых движений: вращательного и поступательного. Сложное движение удобно моделировать на приборе, называемом маятником Максвелла.

Маятник Максвелла представляет собой диск, неподвижно закрепленный на тонком валу, ось которого проходит через центр инерции. Маятник подвешивается к штативу на двух нитях, закрепленных на концах вала симметрично относительно диска. При вращении вала нити наматываются на вал маятника или разматываются, тем самым обеспечивая поступательное перемещение маятника вверх вниз. Если, намотав нить на вал, поднять маятник на некоторую высоту h и отпустить его, то он начнет совершать возвратно-поступательное движение под действием сил тяжести и сил натяжения нитей.

При опускании диска вниз нити разматываются до полной длины. Поступательное движение маятника в этот момент прекращается, но он продолжает вращение в том же направлении и наматывает нити на вал, вследствие чего он поднимается вверх, замедляя при этом свое вращение. Дойдя до верхней точки, маятник останавливается. После чего снова опускается вниз.

На рис. 1 показана схема сил, действующих на вал. Движение маятника осуществляется под действием силы тяжести mg, приложенной в центре инерции и силы натяжения нитей N, действующей по касательной к валу и направленной вертикально вверх. Они образуют пару сил с плечом, равным (где - диаметр вала).

 

Рис. 1

Под действием пары сил с постоянным моментом маятник совершает равноускоренное вращение в направлении, показанном стрелкой, и равномерно ускоренное опускание с ускорением . При этом угловая скорость вращения диска вала связаны соотношением:

,(где ),откуда (1)

Кинетическая энергия маятника в каждый момент времени складывается из энергии поступательного и вращательного движений.

(2)

 

(где - момент инерции маятника относительно оси, проходящей через центр инерции, m - масса маятника).

Из формул (1) и (2) получим:

 

(3)

 

Согласно закону сохранения механической энергии при движении в поле силы тяжести кинетическая энергия маятника, который опускается с высоты h, равна его потенциальной энергии на этой высоте . Подставив в формулу (3) вместо равную ей , получим:

(4)

 

Рассматривая нити как нерастяжимые, считаем, что линейная скорость точек на ободе вала равна линейной скорости опускания центра инерции маятника.

Линейную скорость опускания маятника определим из закона равноускоренного движения:

 

, откуда при

(где – ускорение поступательного движения маятника).

Так как при , линейная скорость , то, заменив в этом равенстве на ,получим:

Подставив это значение линейной скорости в (4), запишем формулу перехода потенциальной энергии маятника в кинетическую в виде:

 

(5)

 

Решив равенство (5) относительно ,получим расчетную формулу для определения момента инерции маятника Максвелла относительно его оси вращения:

 

(6)

(где h высота, с которой опускается маятник,t время опускания).

Измерение пройденного маятником пути осуществляется мерной линейкой, нанесенной на стойке прибора, показанного на рис. 2, а время движения осуществляется автоматическим счетчиком, который включается электромагнитным датчиком П в момент начала опускания маятника и выключается фотоэлектрическим датчиком Ф в момент полного разматывания нитей (при этом ось маятника на мгновение останавливается). Масса маятника mуказывается в паспорте прибора и приводится на стенде лаборатории. Диаметр вала dизмеряется штангенциркулем. К прибору прилагается набор колец с различной массой, которые плотно надеваются на диск маятника, что позволяет рассматривать диск с одетым кольцом как маятник Максвелла с другой массой и другим диаметром D. Измерив момент инерции такого маятника, используя ту же расчетную формулу (6), момент инерции кольца найдем как разность .

Примечание: измерение времени опускания маятника может выполняться с помощью секундомера.

 

Рис. 2




<== предыдущая лекция | следующая лекция ==>
Учебно-методическое обеспечение дисциплины (модуля) | 

Дата добавления: 2015-10-18; просмотров: 329. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия