Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Изучение свойств азотной, серной и ортофосфорной кислот




 

Цель работы: изучение на опыте химических свойств азотной, серной и фосфорной кислот.

Оборудование и реактивы: плоскодонная колба с газоотводной трубкой, круглодонная колба, стакан с охладительной смесью (смесь измельченного льда и хлорида натрия), песчаная баня, электроплитка, центрифуга, спиртовка, лабораторный штатив с лапками, термометр, фарфоровая пластинка, фарфоровая чашка, пипетки, стеклянные палочки, химический стакан, пробирка с газоотводной трубкой, конические и обычные пробирки, стеклянная воронка, универсальная индикаторная бумага, бумажные фильтры, 0,1М растворы (NH4)2MoO4; BaCl2; Pb(NO3)2; Na3PO4; Na2HPO4; NaH2PO4; AgNO3; KNO3, концентрированные соляная, серная и азотная кислоты, 50%-ный раствор серной кислоты, разбавленные серная и азотная (r = 1,12 г/см3) кислоты, 30%-ный раствор КОН, 2М раствор КОН или NaOH, раствор 6Н5)2NH, 30%-ный раствор СН3СОО(NH4), реактив Неслера, раствор чернил, кристаллические нитрат калия или нитрат натрия, фосфоритная мука (Са3(РО4)2), сахарная пудра, медная стружка, олово, порошок алюминия, порошкообразная сера, кусочки угля, дистиллированная вода.

ТЕОРЕТИЧЕСКИЕ ПОЯСНЕНИЯ

 

В состав молекул азотной, серной и фосфорной кислот, кроме водорода и кислорода входят типичные неметаллы - элементы VA (азот и фосфор) и VIA (сера) групп. В молекулах этих кислот указанные элементы находятся в высших степенях окисления: +5 для азота в HNO3 и фосфора в H3PO4, и +6 для серы в H2SO4. Следовательно, кроме характерных реакций кислот – восстановления катионов водорода и ионного обмена, эти соединения способны участвовать также и в окислительно-восстановительных реакциях, обусловленных изменением степени окисления элемента Э (Э = N, P, S). При этом возможен только процесс восстановления:

Эn+ + me- → Э(n-m)+

При сравнении окислительно-восстановительных потенциалов можно убедиться, что в ряду HNO3, H2SO4, H3PO4 окислительная активность уменьшается:

NO3- + 4H+ +3e- → NO + 2H2O ; E0 = + 0.957 В

SO42- + 4H+ + 2e-→ H2SO3 + H2O ; E0 = + 0.231 В

H3PO4 +2H+ + 2e-→ H3PO3 + H2O; E0 = - 0.276 В

восстановление

 

окисление

 

Данные, приведенные в таблице 3.1, свидетельствуют, что среди минеральных кислот самая сильная - соляная, а в ряду H2SO4, HNO3, H3PO4 кислотность резко падает.

 

Таблица 3.1 – Константы диссоциации кислот при 25оС

 

Кислота К1 К2 К3
Азотная 43,6
Серная 103 1,2•10-2
Фосфорная 7,52•10-3 6,3•10-3 1,26•10-12
Соляная 107

 

Все соли азотной кислоты (нитраты) хорошо растворимы в воде.

Серная и фосфорная кислота, будучи многоосновными, образуют кислые и средние соли.

В твердом состоянии существуют только растворимые в воде гидросульфаты щелочных металлов. Гидросульфаты щелочноземельных и некоторых других металлов существуют лишь в водных растворах. Из средних солей серной кислоты (сульфаты) в воде нерастворимы бариевые, кальциевые, стронциевые и свинцовые.

Фосфорная кислота образует три типа солей. Все дигидрофосфаты растворимы в воде. Из гидрофосфатов и фосфатов в воде растворимы только соли щелочных металлов и катионов аммония. Поэтому фосфорная кислота реагирует, с выделением водорода, только со щелочными металлами. При взаимодействии с другими металлами процесс их растворения ингибируется в результате образования защитного слоя нерастворимой соли.

Средние соли фосфорной кислоты (фосфаты), кроме (NH4)3PO4, при прокаливании не разлагаются. Гидрофосфаты при этом переходят в пирофосфаты:

2Na2HPO4 → Na 4P2O7 + H2O

Пирофосфаты - соли пирофосфорной (Н4Р2О7), или двуфосфорной кислоты, которая является первым представителем полифосфорных кислот, в молекулах которых имеются цепочки с кислородным мостиком (–О3Р-О-РО3 –).

Двуфосфорная кислота хорошо растворяется в воде и является несколько более сильной кислотой, чем Н3РО4.

При прокаливании дигидрофосфаты и натрийаммонийгидрофосфат переходят в метафосфаты:

2NaH2PO4 → NaPO3 + H2O

NaNH4HPO4 → NaPO3 + H2O + NH3

Метафосфаты – соли метафосфорной кислоты (НРО3), которая является продуктом реакции оксида фосфора (V) c водой в мольном соотношении 1:1

Р2О5 + Н2О → 2НРО3.

При избытке воды образуется фосфорная кислота (в соответствии с номенклатурой IUPAC ее правильнее назвать ортофосфорной, а ее соли ортофосфатами):

НРО3 + Н2О → 3РО4.

Для ортофосфорной кислоты и ее солей характерна реакция с кислым раствором молибденовокислого аммония, в результате которой образуется желтый кристаллический осадок–кислый фосфорномолибденовокислый аммоний:

H3PO4+12(NH4)2MoO4+21HNO3 (NH4)3H4[P(Mo2O7)6] + 21NH4NO3+10Н2О

Серная кислота, в зависимости от ее концентрации, по-разному реагирует с металлами. Так, разбавленная серная кислота реагирует с выделением водорода со всеми активными металлами, стоящими в ряду напряжения левее водорода (кроме стронция и свинца). Продуктами реакции концентрированной серной кислоты, в зависимости от условий и активности металла, могут быть SO2, S и H2S. При этом она может реагировать и с металлами, стоящими правее водорода до серебра включительно. Например,

Cu + H2SO4(конц) → CuSO4 + SO2 + H2O

4Zn + 5H2SO4(конц) → 4ZnSO4 + H2S + 4H2O

H2S + H2SO4 → S + SO2 + 2H2O

Так как сероводород взаимодействует с серной кислотой, то в продуктах реакции взаимодействия ее с цинком могут оказаться SO2, S и H2S. Некоторые авторы считают, что окислительные свойства серной кислоты обусловлены наличием в реакционной среде сильной окислительно-восстановительной пары: атомарный водород (водород в момент выделения, который оказывается первичным продуктом реакции серной кислоты с активными металлами) и сульфат анион.

Me + H2SO4→2H + MeSO4

8H + SO42-→ S2- + 4H2O

Сульфаты термически относительно стойкие соединения и подвергаются разложению при высоких температурах (> 7000C). Только сульфат аммония разлагается при > 2100C. При этом, в зависимости от природы металла продуктами разложения могут оказаться оксид металла и SO3 (Al2(SO4)3 >580oC, Fe2(SO4)3 >600oC), SO2 и кислород (CaSO4 >960oC, CuSO4 >650oC, MgSO4 >1200oC), а в случае (NH4)2SO4 - аммиак и Н2SO4.

Взаимодействие азотной кислоты с металлами можно представить в следующем виде:

 

HNO3
концентрированная разбавленная
Щелочные и щелочноземельные Ме, Zn. Fe, Cr, AI, Ni. Другие тяжелые Ме, Cu. Pt, Au. Щелочные и щелочноземельные Ме, Zn. Тяжелые Ме, Cu. Pt, Au.
N2O Пассивируются NO2 Не реагируют NH4NO3 NO Не реагируют

 

Как видно из таблицы, азотная кислота, независимо от концентрации, реагирует с металлами с образованием смеси продуктов (NO2, NO, N2O, N2, NH3). Водород при этом не выделяется.

Этот факт так же, как и в случае с концентрированной серной кислотой, можно объяснить наличием последовательных окислительно–восстановительных процессов. Если допустить, что в азотной кислоте, как и во всех других кислотах, первичным является процесс восстановления протона с образованием атомарного водорода:

Ме +nH+ →Men+ + nH,

 

то при дальнейшем взаимодействии активной окислительно-восстановительной пары Н + N+5 образуется аммиак и все другие возможные продукты последовательных превращений:

8Н + HNO3→NH3 + 3H2O;

3NH3 + 5HNO3 → 8NO + 7H2O и так далее.

Образование 2 в растворах концентрированной азотной кислоты объясняется тем, что любое другое состояние азота (от –3 до + 2, то есть от аммиака до NO) в среде HNO3 образует реакционноспособную окислительно-восстановительную пару (N5+,N3-) или (N5+, N2+). В результате окислительно-восстановительных превращений образуется нереакционноспособная пара (N5+,N4+) (то есть NO2 в НNO3).

Азотная кислота с соляной в мольном соотношении 1 : 3 образует “царскую водку” (слово “водка” уменьшительное от слова вода!).

HNO3 + 3HCl → Cl2 + NOCl + 2H2O.

Образовавшийся нитрозилхлорид (NOCl) на свету или при стоянии разлагается с образованием атомарного хлора: NOCl → NO + Cl, а оксид азота (II) в атмосфере воздуха превращается в оксид азота (IV): 2NO+O2→ 2NO2. Поэтому, когда визуально наблюдают за процессом взаимодействия соляной кислоты с азотной, необходимо учесть, что образовавшийся бурый, с едким запахом газ NO2 является продуктом вторичного процесса окисления NO.

Таким образом, образуется сильная окислительная среда (Сl2, Cl и NO). Особенно велика роль атомарного хлора в процессах растворения металлов в царской водке, в которой растворимы даже благородные металлы (Au, Pt):

HNO3 + 3HCl + Au =AuCl3 + NO + 2H2O.

Азотная и серная кислоты взаимодействуют со многими неметаллами, окисляя их до соответствующих кислот:

S + 2HNO3 = H2SO4 + 2NO

3P + 5HNO3 + 2H2O = 3H3PO4 + 5NO

B + 3HNO3 = H3BO3 + 3 NO2C + 4HNO3 = CO2 + 2H2O + 4NO2

C + 2H2SO4 = CO2 + 2SO2 + 2H2O

S + 2H2SO4 = 3SO2 + 2H2O

Термическое разложение нитратов сопровождается изменением степеней окисления элементов, входящих в состав нитрата.

Считается, что при разложении всех нитратов образуются соответствующие нитриты и кислород. Так как нитриты щелочных металлов термически стабильны, то процесс заканчивается образованием нитритов.

Если соответствующий нитрит при этих температурах неустойчив, образуются продукты его разложения:

MeNO2→ MeO + NO2

Если при температуре разложения нитрата образовавшийся оксид термически неустойчив (оксиды благородных металлов), то в продуктах оказывается соответствующий металл - продукт разложения соответствующего оксида:

МеО → Me + O2.

Нитрат аммония разлагается с образованием оксида азота (I):

NH4NO3 → N2O + 2H2O.

 

левее Mg MeNO2 + O2

от Mg до Сu

MeNO3 MeO + NO2 + O2

 
 


правее Сu Me + NO2 + O2

 
 

 


МЕТОДИКА ПРОВЕДЕНИЯ ОПЫТОВ

 

Опыт 1: Получение концентрированной азотной кислоты

 

К нитрату калия или натрия, помещенному в колбу с газоотводной трубкой, приливать такое количество концентрированной серной кислоты, чтобы она полностью покрыла соль. Колбу герметично соединить с круглодонной колбой, которая помещена в охлаждающую смесь (снег и хлорид натрия). Колбу с солью постепенно нагреть на песчаной бане (тяга!), сначала до 1000С, а затем до 1200С. Реакцию считать законченной, когда в колбе останется желтоватая жидкость и азотная кислота почти перестанет перегоняться в приемник. На фарфоровую пластинку нанести 2 капли синтезированной азотной кислоты и прибавить каплю раствора дифениламина 6Н5)2NH. Раствор окрашивается в темно-синий цвет. Эта реакция считается качественной для обнаружения азотной кислоты.

 

Опыт 2: Синтез фосфорной кислоты разложением фосфорита

 

В коническую пробирку всыпать около 1г фосфоритной муки Са3(РО4)2, прилить 2 мл 50%-ного раствора серной кислоты и прокипятить смесь в течение 1-2 мин. Прибавить 2 мл воды и тщательно размешать шпателем. Раствор с осадком центрифугировать и слить центрифугат в другую пробирку. Определить наличие в растворе анионов фосфорной кислоты. Как это сделать? Составьте все необходимые уравнения реакций.

 

Опыт 3: Гидратация серной кислоты

 

В пробирку с 2 мл воды после измерения ее температуры прилейте 1 мл концентрированной серной кислоты. Осторожно перемешать раствор термометром и определить его температуру. Почему происходит выделение тепла? Почему нельзя вливать воду в серную кислоту?

 

Опыт 4: Открытие азотной кислоты

 

На фарфоровую пластинку нанести 2 капли азотной кислоты и прибавить каплю раствора дифениламина (C6H5)2NH. Раствор окрашивается в темно-синий цвет.

Опыт 5: Обугливающее действие серной кислоты

 

1г сахарной пудры смочить 10 каплями воды, влить 1мл концентрированной серной кислоты и смесь перемешать стеклянной палочкой. Выразите наблюдаемые явления соответствующими уравнениями реакций.

На кусочке фильтровальной бумаги стеклянной палочкой, смоченной концентрированной серной кислотой, написать формулу этой кислоты и нагреть бумагу на электроплите. Объясните наблюдаемое.

 

Опыт 6: Открытие аниона SO42-

 

К раствору серной кислоты добавить раствор хлорида бария; выпадает белый осадок, который не растворяется в концентрированной соляной кислоте. Проделать аналогичный опыт с раствором нитрата свинца. Отделить осадок и растворить его в 30%-ном горячем водном растворе ацетата аммония. Эту реакцию используют в химическом анализе для разделения смеси сульфатов бария и свинца.

Опыт 7: Взаимодействие разбавленной азотной кислоты с медью и оловом

 

Опыт проводить под тягой. В две пробирки внести по 3-4 капли разбавленной азотной кислоты (плотность 1,12 г/см3). В одну из пробирок опустите кусочек медной стружки, в другую - кусочек олова. В обоих случаях реакция идет с образованием главным образом бесцветного газа NO и нитратов олова (II) и меди (II). Написать уравнения реакций взаимодействия разбавленной азотной кислоты с оловом и медью.

Опыт 8: Взаимодействие концентрированной азотной кислоты с оловом и медью

 

Повторить опыт 3.2.7, только использовать концентрированную азотную кислоту и пробирки, после внесения туда металлов, слегка нагреть. Написать уравнения реакций с учетом, что выделившийся бурый, с едким запахом газ – NO2.

 

Опыт 9: Взаимодействие концентрированной азотной кислоты с серой

 

В небольшую фарфоровую чашку положить немного порошкообразной серы, налить несколько миллилитров концентрированной азотной кислоты, смесь нагреть 10-15 минут на электроплитке, после чего разбавить водой, отфильтровать непрореагировавшую серу. В фильтрате обнаружить присутствие серной кислоты.

 

Опыт 10: Получение царской водки

 

В пробирку с газоотводной трубкой налить 1 мл концентрированной азотной и 3 мл концентрированной соляной кислоты. Стеклянный конец газоотводной трубки опустить в стакан с разбавленным раствором щелочи. Пробирку слегка нагреть (осторожно тяга!) до начала бурной реакции с выделением газов. Уходящие из пробирки газы собрать в растворе со щелочью. После завершения выделения газов в водный раствор со щелочью добавить раствор чернил. Почему окрашенный раствор обесцветился? В этот же раствор внести несколько капель нитрата серебра. Почему выпал творожистый осадок? Написать уравнения всех химических процессов.

 

Опыт 11: Окислительные свойства нитратов

 

В пробирку налить 1-2 мл раствора KNO3 и 3-5 мл 30%-ного раствора КОН. Добавить небольшое количество порошка алюминия и нагреть 2-3 минуты.

Раствор охладить и добавить реактив Неслера (реактив для качественного определения катионов аммония).

 

Опыт 12: Разложение нитратов

 

В сухой пробирке, закрепленной в штативе вертикально, расплавить около одного грамма нитрата калия или натрия. Наблюдать за выделением пузырьков газа. В расплавленную соль бросить маленький, предварительно раскаленный уголек. Что наблюдается? По окончании реакции с углем бросить в пробирку небольшой кусочек серы. Что происходит?

 

Опыт 13: Гидролиз солей фосфорных кислот

 

На бумагу, пропитанную раствором универсального индикатора, нанести по капле раствора фосфата, гидрофосфата и дигидрофосфата натрия и по окраске и шкале определить значение рН. Объяснить наблюдаемые явления и написать уравнения реакций соответствующих процессов.

 

 

НЕОБХОДИМЫЙ УРОВЕНЬ ПОДГОТОВКИ СТУДЕНТОВ

 

1. Необходимо знать физико-химические и химические свойства азотной, серной и фосфорной кислот;

2. Уметь составлять соответствующие уравнения реакций.

 

ЗАДАНИЯ ДЛЯ САМОКОНТРОЛЯ

 

1. Почему азотная, серная и фосфорная кислоты способны проявлять только окислительные свойства?

2. Какая из трех изучаемых кислот обладает более выраженными окислительными свойствами? Какие показатели свидетельствуют об этом?

3. Какая из изученных минеральных кислот самая сильная и какая самая слабая? Объясните эти факты, пользуясь представлениями о строении веществ.

4. Почему у многоосновных кислот константы последующих ступеней диссоциации уменьшаются?

5. Как можно объяснить образование смеси продуктов в реакциях взаимодействия концентрированной серной кислоты с активными металлами?

6. Как ведут себя сульфаты при высоких температурах?

7. Почему фосфорная кислота взаимодействует только со щелочными металлами?

8. Почему стронций и свинец не взаимодействуют с разбавленной серной кислотой?

9. Почему водород не обнаруживается в продуктах реакции азотной кислоты с активными металлами?

10. Почему в концентрированной азотной кислоте основным продуктом окислительно-восстановительных реакций является оксид азота (IV)?

11. Почему при взаимодействии очень разбавленной азотной кислоты с активными металлами образуется аммиак?

12. Как можно объяснить образование различных продуктов при термическом разложении нитратов?

13. Как можно объяснить чрезмерные окислительные свойства царской водки?

14. Почему в продуктах реакции концентрированной серной кислоты не может быть сероводород?

15. Предложить два способа превращения нитрата натрия в хлорид, имея в распоряжении соляную кислоту и нитрат натрия.

 

ЛИТЕРАТУРА

 

1. Л.М.Романцева, З.Л.Лещинская, В.А.Суханова. Сборник задач и упражнений по общей химии.-М.:Высш. шк., 1991.

2. Н.С. Ахметов. Общая и неорганическая химия.– М.: Высш. шк., 1981.

3. Химия:Справ.изд/В.Шретер, К.-Х.Лаутеншлегер, Х.Бибрак и др.: Пер. с нем.–

М.: Химия, 1997.







Дата добавления: 2015-10-19; просмотров: 1942. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2020 год . (0.022 сек.) русская версия | украинская версия