Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Правила верификации К. Хоара.





Сформулируем правила (аксиомы) К.Хоара, которые определяют предусловия как достаточные предусловия, гарантирующие, что исполнение соответствующего оператора при успешном завершении приведет к желаемым постусловиям.

A1. Аксиома присваивания: { Ro } x:= Е { R }

Неформальное объяснение аксиомы: так как x после выполнения будет содержать значение Е, то R будет истинно после выполнения, если результат подстановки Е вместо x в R истинен перед выполнением. Таким образом, Ro = R(x) при x = E. Для Ro вводится обозначение: Ro = RxЕ (у Вирта) или Rx→Е (у Дейкстры), что означает, что x заменяется на Е.

Аксиома присваивания будет иметь вид:{RxЕ} x:= Е {R}.

Сформулируем два очевидных правила монотонности.

A2. Если известно: { Q } S { P } и { P } => { R }, то { Q } S { R }

A3. Если известно: { Q } S { P } и { R } => { Q }, то { R } S { P }

Пусть S - это последовательность из двух операторов S1; S2 (составной оператор).

A4. Если известно:{ Q } S1 { P1 } и { P1 } S2 { R }, то { Q } S { R }.

Это правило можно сформулировать для последовательности, состоящей из n операторов.

Сформулируем правило для условного оператора (краткая форма).

A5. Если известно:

{ Q AND B } S1 { R } и { Q NOT B } => { R },то { Q } if B then S1 { R }.

Правило A5 соответствует интерпретации условного оператора в языке программирования.

Сформулируем правило для альтернативного оператора (полная форма условного оператора).

A6. Если известно: { Q AND B } S1 { R } и { Q NOT B } S2 { R },то { Q } if B then S1 else S2 { R }.

Сформулируем правила для операторов цикла.

Предусловия и постусловия цикла until удовлетворяют правилу:

A7. Если известно: { Q AND NOT B } S1 { Q }, то { Q } repeat S1 until B { Q AND NOT B }

Правило отражает инвариантность цикла. В данном случае единственная операция - это выполнение шага цикла при условии истинности Q вначале.

Предусловия и постусловия цикла while удовлетворяют правилу:

A8. Если известно: { Q AND B } S1 { Q }, то { Q } while B do S1 { Q AND NOT B }

Правила A1 - A8 можно использовать для проверки согласованности передачи данных от оператора к оператору, для анализа структурных свойств текстов программ, для установления условий окончания цикла и для анализа результатов выполнения программы.

Пример 2.12. Пусть надо определить частное q и остаток r от деления x на y.

Входные данные x, y и выходные данные q, r Î Nat, причем y > 0.

Задать(x,y); /* x,y получают конкретные значения X,Y */

r:= x; q:= 0;

while y £ r do

Begin

r:= r - y; q:= q + 1

end;

выдать(q,r);

Сформулируем постусловие

R: (r < y) AND (x = y*q + r)

Нужно доказать, что

{y > 0 AND x/y} S {(r < y) AND (x = y*q + r)}.

Доказательство.

1. Очевидно, что Q => x = x + y * 0.

2. Применим аксиому A1 к оператору r:= x, тогда получим { x = x + y * 0 } r:= x { x = r + y * 0 }

3. Аналогично, применяя A1 к оператору q:= 0, получим: { x = r + y * 0 } q:= 0 { x = r + y*q }

4. Применяя правило A3 к результатам пунктов 1 и 2, получим { Q } r:= x { x = r + y * 0 }

5. Применяя правило A4 к результатам пунктов 4 и 3, получим { Q } r:= x; q:= 0 { x = r + y*q }

6. Выполним равносильное преобразование x = r + y * q AND y £ r => x = (r - y) + y*(q + 1)

7. Применяя правило A1 к оператору r:= r - y, получим {x = (r - y) + y*(q + 1)} r:= r - y {x = r+ y*(q+1)}

8. Для оператора q:= q + 1 аналогично получим { x = r + y*(q + 1) } q:= q + 1 { x = r + y*q }

Применяя правило A4 к результатам пунктов 7 и 8, получим

{ x = (r - y) + y*(q + 1) } r:= r - y; q:= q + 1 { x = r + y*q }

Применяя правило A2 к результатам пунктов 6 и 9, получим

{ x = r + y*q AND y £ r } r:= r - y; q:= q + 1 { x = r + y*q }

Применяя правило A8 к результату пункта 10, получим

{x = r + y*q } while y £ r do begin r:= r - y; q:= q + 1 end { NOT (y <= r) AND (x = r + y*q) }

Утверждение x = r + y*q является инвариантом цикла, так как значение его остается истинным до цикла и после выполнения каждого шага цикла.

Применяя правило A4 к результатам пунктов 5 и 11, получаем то, что требовалось доказать,

{ Q } S { NOT (y £ r) AND (x = r + y*q) }

Осталось доказать, что выполнение программы заканчивается.

Доказывать будем от противного, т.е. предположим, что программа не заканчивается. Тогда должна существовать бесконечная последовательность значений r и q, удовлетворяющая условиям

1) y £ r;

2) r, q Î Nat.

Но значение r на каждом шаге цикла уменьшается на положительную величину: r:= r - y (y > 0). Значит, последовательность значений r и q является конечной, т.е. найдется такое значение r, для которого не будет выполняться условие y £ r и циклический процесс завершится.

Теоретические модели вычислительных процессов







Дата добавления: 2015-10-19; просмотров: 648. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия