Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Способы задания движения точки





Движение точки может быть задано одним из трех способов.

1. Векторный способ. Пусть точка М движется по отношению к некоторой си­стеме отсчета Oxyz. Положение точки в любой момент времени можно определить, задав ее радиус-вектор (рисунок 3.1) как функцию от времени t

Рисунок 3.1
. (3.2.1)

Это и есть закон движения точки в векторной форме.

2. Координатный способ. Положение точки можно непосредственно определять ее координатами, изменяющимися при движении с течением времени

. (3.2.2)

Рисунок 3.2
Это - закон движения точки в прямоугольных декартовых координатах.

3. Естественный способ. Задать движение точки естественным способом – это задать (рисунок 3.2) ее траекторию, начало отсчета на траектории с указанием направлений отсчета и закон движения в виде

.

 

Скоростью точки в данный момент времени t называется величина , так что скорость есть первая производная от вектора по аргументу t:

.

Ускорением точки в данный момент времени t называют векторную величину, к которой стремится при стремлении промежутка времени Dt к нулю

.

т.е., вектор ускорения точки в данный момент времени равен первой производной от вектора скорости или второй производной от радиуса-вектора точки по времени

 

 

Билет8. Определение скорости и ускорения точки при координатном способе задания движения.

Используем следующую теорему: проекция производной от вектора на ось, неподвижную в данной СО, равна производной от проекции дифференцируемого вектора на ту же ось.

Тогда для проекций скорости имеем

или .

т.е., проекции скорости точки на координатные оси равны первым производным от проекций соответствующих координат точки по времени.

Для проекций ускорения имеем

, ,

или , т.е. проекции ускорения точки на координатные оси равны первым производным от проекций скорости или вторым производным от координат точки по времени.

 

Билет9. Оси естественного трехгранника. Числовое значение скорости. Касательное и нормальное ускорения точки.







Дата добавления: 2015-10-19; просмотров: 512. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия