Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференциальные уравнения движения материальной точки





Рассмотрим движение МТ под действием сил { } относительно инерциальной СО Оxyz, считая, что среди сил имеются реакции связей.

Проецируя уравнение на естественные оси, получаем естественные дифференциальные уравнения движения (ДУД)

; (4.1.4)

проецируя на декартовы оси, получаем ДУД точки в декартовых координатах

(4.1.5)

ДУД применяются к решению двух основных задач динамики МТ:

1-я основная задача: по движению точки найти приложенную к ней силу. Здесь нужно продифференцировать уравнения движения МТ и результаты подставить в (4.1.4) или (4.1.5), откуда определяется приложенная к точке сила;

2-я основная задача: по силам, приложенным к точке, найти ее движение. Решая эту задачу, нужно в общем случае найти вторые интегралы дифференциальных уравнений (4.1.4) или (4.1.5). В частных случаях возможно интегрирование ДУД точки, применяя метод разделения переменных.

 

Билет16. Количество движения точки. Импульс силы. Теорема об изменении количества движения точки.

Законы динамики справедливы только в инерциальной СО. Рассмотрим движение МТ относительно СО, которая движется произвольно относительно инерциальной СО. Рассмотрим движение точки P под действием сил { }. В инерциальной СО справедливо основное уравнение динамики (4.1.2). Абсолютное ускорение точки можно найти по формуле (3.10.8)

(4.3.1)

Подставим (4.3.1) в равенство (4.1.5) и преобразуем его

(4.3.2)

Примем обозначения

(4.3.3)

и (4.3.4)

Векторы и называют соответственно переносной и кориолисовой силами инерции.

Равенство (6.6) можно записать в виде

(4.3.4)

Уравнение (4.3.4) называют основным уравнением динамики относительного движения МТ. Уравнения относительного движения МТ составляются также, как в случае абсолютного движения, если к числу действующих сил добавить переносную и кориолисову силы инерции. Наблюдатель, который находится в движущейся неинерциальной системе отсчета, воспринимает переносную и кориолисову силы инерции, как реально существующие силы. Но это неверно, так как в неинерциальной СО законы механики Ньютона не действуют, и рассматривать явления с точки зрения предыдущих аксиом нельзя.

Частные случаи основного уравнения относительного движения МТ:

а) при поступательном переносном движении

(4.3.5)

б) при прямолинейном и равномерном переносном движении

(4.3.6)

Уравнения (4.3.6) и (4.1.2) совпадают, так как . Следовательно, данная система отсчета инерциальная. Механическими опытами невозможно установить, неподвижна ли система отсчета, или она движется поступательно, равномерно и прямолинейно (принцип относительности Галилея);

в) в относительном состоянии покоя

(4.3.7)

Это уравнение относительного равновесия МТ.







Дата добавления: 2015-10-19; просмотров: 991. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия