Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Элементарная сенсорная психика





 

Согласно представлениям Леонтьева, стадия элементарной сенсорной психики характеризуется примитивными элементами чувствительности, не выходящими за пределы простейших ощущений. Низший уровень стадии элементарной сенсорной психики, на котором находятся простейшие и низшие многоклеточные организмы, живущие в водной среде, характеризуется тем, что здесь в достаточно развитом виде представлена раздражимость – способность живых организмов реагировать на биологически значимые воздействия среды повышением уровня своей активности, изменением направления и скорости движений. Чувствительность как способность реагировать на биологически нейтральные свойства среды и готовность к научению методом условных рефлексов еще отсутствует. Двигательная активность животных еще не имеет поискового, целенаправленного характера.

На высшем уровне развития этой стадии психики у животных отмечается выделение специализированного органа, осуществляющего сложные манипулятивные движения организма с предметами внешнего мира. Таким органом у низших животных являются челюсти. Они заменяют им руки, которые есть только у человека и некоторых высших живых существ. Челюсти сохраняют свою роль как основной орган манипуляций и исследования окружающего мира в течение длительного периода эволюции, вплоть до освобождения для этой цели передних конечностей животного.

 

Низший уровень сенсорной психики. На низшем уровне психического развития находится довольно большая группа животных; среди них встречаются и такие животные, которые стоят еще на грани животного и растительного мира (жгутиковые), а с другой стороны, и сравнительно сложно устроенные одноклеточные и многоклеточные животные.

 

1. Простейшие. К наиболее типичным представителям рассматриваемой здесь группы животных относятся простейшие. Организм представителей этого типа состоит из единственной клетки, обеспечивающей все жизненные потребности животного. Филогенез простейших шел фактически параллельно развитию многоклеточных животных, что нашло свое отражение в формировании у простейших аналогов систем органов, так называемых органелл.

На низшей ступени развития жизни у простейших одноклеточных животных наблюдается разнообразное поведение. Под микроскопом в капле воды можно видеть, как движутся, питаются, размножаются и погибают амёбы и инфузории. Сложность движений этих организмов поразительна. О трудностях изучения жизнедеятельности простейших животных проф. В. А. Вагнер остроумно и справедливо пишет: «В термине «простейшие» больше иронии, чем правды. Изучение их жизни не проще, чем изучение сложных организмов».

Движения простейших отличаются большим разнообразием, причем у представителей этого типа встречаются способы локомоции, присущие только им и совершенно отсутствующие у многоклеточных животных. Это, например, своеобразный способ передвижения амеб при помощи «переливания» плазмы из одного участка тела в другой. Другие представители простейших, грегарины, передвигаются своеобразным «реактивным» способом – путем выделения из заднего конца тела слизи, толкающей животное вперед. Существуют и простейшие, пассивно парящие в воде.

Однако большинство простейших передвигаются активно с помощью особых структур, производящих ритмичные движения, – жгутиков или ресничек. Они представляют собой плазматические выросты, совершающие колебательные, вращательные или волнообразные движения. Жгутиками, длинными волосовидными выростами обладают примитивные простейшие – жгутиковые, получившие свое название благодаря этому образованию. С помощью жгутиков тело животного (например, эвглены) приводится в спиралевидное поступательное движение. Более сложным двигательным аппаратом являются реснички, покрывающие в большом числе тело инфузорий. Как правило, реснитчатый покров располагается неравномерно, реснички достигают на разных участках тела различной длины, образуют кольцевидные уплотнения (мембранеллы) и т.п. Так, например, инфузории-стилонихии при помощи этих своеобразных органелл способны не только плавать, но и «бегать» по твердому субстрату, причем как вперед, так и назад. Жгутики и реснички приводятся в движение сокращениями миофибрилл, которые образуют волоконца, мионемы, соответствующие мышцам многоклеточных животных. У большинства простейших они являются основным двигательным аппаратом, причем имеются они даже у наиболее примитивных представителей типа жгутиковых. Мионемы располагаются в строгом порядке, чаще всего в виде колец, продольных нитей или лент, а у высших представителей и в виде специализированных систем. Сложные системы мионем позволяют простейшим производить не только простые сократительные движения тела, но и достаточно разнообразные специализированные локомоторные и не локомоторные движения.

У тех простейших, у которых нет мионем (у амеб, корненожек, споровиков и некоторых других простейших), сократительные движения совершаются непосредственно в цитоплазме. Таким образом, еще задолго до появления мышц перемещение животного в пространстве совершается путем сокращений. Именно сократительная функция, которую у простейших осуществляют мионемы, а у многоклеточных мышцы, обеспечивала все разнообразие и всю сложность двигательной активности животных на всех этапах филогенеза.

Элементарные движения простейших иначе называют кинезами. Типичным примером кинеза является ортокинез – поступательное движение с переменной скоростью. Если, например, на определенном участке существует температурный градиент (перепад температур), то движения инфузории-туфельки будут тем более быстрыми, чем дальше животное будет находиться от места с оптимальной температурой. Следовательно, здесь интенсивность поведенческого (локомоторного) акта непосредственно определяется пространственной структурой внешнего раздражителя.

В отличие от ортокинеза при клинокинезе имеет место изменение направления передвижения. Это изменение не является целеустремленным, а носит характер проб и ошибок, в результате которых животное в конце концов попадает в зону с наиболее благоприятными параметрами раздражителей. Частота и интенсивность этих изменений зависят от интенсивности воздействующего на животное отрицательного раздражителя (или раздражителей). С ослаблением силы действия этого раздражителя уменьшается и интенсивность клинокинеза. В данном случае животное также реагирует на градиент раздражителя, но не увеличением или уменьшением скорости передвижения, как при ортокинезе, а поворотами оси тела, т.е. изменением вектора двигательной активности.

Таким образом, осуществление наиболее примитивных инстинктивных движений – кинезов – определяется непосредственным воздействием градиентов интенсивности биологически значимых внешних факторов. Роль внутренних процессов, происходящих в цитоплазме, заключается в том, что они дают поведенческому акту «первый толчок», как и у многоклеточных животных.

 

Ориентация. Уже на примерах кинезов мы видели, что градиенты внешних раздражителей выступают у простейших одновременно как пусковые и направляющие стимулы. Особенно наглядно это проявляется при клинокинезах. Однако изменения положения животного в пространстве еще не являются здесь подлинно ориентирующими, поскольку они носят ненаправленный характер. Для достижения полного биологического эффекта клинокинетические, как и ортокинетические, движения нуждаются в дополнительной коррекции, позволяющей животному более адекватно ориентироваться в окружающей его среде по источникам раздражения, а не только менять характер движения при неблагоприятных условиях.

Ориентирующими элементами являются у представителей рассматриваемого типа и у других низших беспозвоночных, стоящих на данном уровне психического развития, простейшие таксисы. В ортокинезах ориентирующий компонент – ортотаксис – проявляется в изменении скорости передвижения без изменения его направления в градиенте внешнего раздражителя. В клинокинезах этот компонент называется клинотаксисом и проявляется в изменении направления движения на определенный угол. Под таксисами понимают генетически фиксированные механизмы пространственной ориентации двигательной активности животных в сторону благоприятных (положительные таксисы) или в сторону от неблагоприятных (отрицательные таксисы) условий среды. Так, например, отрицательные термотаксисы выражаются у простейших, как правило, в том, что они уплывают из зон с относительно высокой температурой воды, реже – из зон с низкой температурой. В результате животное оказывается в определенной зоне термического оптимума (зоне предпочитаемой температуры). В случае ортокинеза в температурном градиенте отрицательный ортотермотаксис обеспечивает прямолинейное удаление от неблагоприятных термических условий. Если же имеет место клинокинетическая реакция, то клинотаксис обеспечивает четкое изменение направления передвижения, ориентируя тем самым случайные клинокинетические движения в градиенте раздражителя (в нашем примере – в термическом градиенте).

Зачастую клинотаксисы проявляются в ритмичных маятникообразных движениях (на месте или при передвижении) или в спиралевидной траектории плывущего животного. И здесь имеет место регулярный поворот оси тела животного (у многоклеточных животных это может быть и только часть тела, например голова) на определенный угол.

Клинотаксисы обнаруживаются и при встрече с твердыми преградами. Например, наткнувшись на твердую преграду (или попав в зону с другими неблагоприятными параметрами среды), инфузория-туфелька останавливается, у нее изменяется характер биения ресничек, и она отплывает немного назад. После этого инфузория поворачивается на определенный угол и снова плывет вперед. Это продолжается до тех пор, пока она не проплывет мимо преграды (или не минует неблагоприятную зону).

В приведенных примерах описывались реакции простейших (в данном случае инфузорий) на температуру и тактильный раздражитель (прикосновение). Речь шла, следовательно, о термо– и тигмотаксисах, в последнем случае – об отрицательном тигмоклинотаксисе, возникающем в ответ на сильное тактильное раздражение (соприкосновение с твердой поверхностью объекта).

Если же, наоборот, туфелька натыкается не на твердое препятствие, а на мягкий объект (например, растительные остатки, фильтровальная бумага), она реагирует иначе: при такой слабой тактильной стимуляции инфузория останавливается и прикладывается к этой поверхности так, чтобы максимальный участок тела соприкасался с поверхностью объекта (положительный тигмотаксис). Аналогичная картина наблюдается и при воздействиях других модальностей на направление движения, т.е. положительный или отрицательный характер реакции зависит от интенсивности раздражения. Как правило, простейшие реагируют на слабые раздражения положительно, на сильные – отрицательно, но в целом простейшим больше свойственно избегать неблагоприятных воздействий, нежели активно искать положительные раздражители.

Возвращаясь к тигмотаксисам, важно отметить, что у инфузорий обнаружены специальные рецепторы тактильной чувствительности – осязательные «волоски», которые особенно выделяются на переднем и заднем концах тела. Эти образования служат не для поиска пищи, а только для тактильного обследования поверхностей объектов, с которыми животное сталкивается. Раздражение этих органелл и приводит в описанном примере к прекращению кинетической реакции.

Особенностью тигмотаксисной реакции является то, что она часто ослабевает, а затем и прекращается после прикасания к объекту максимальной поверхностью тела: приставшая к объекту туфелька в возрастающей мере начинает реагировать на иной раздражитель и все больше отделяется от объекта. Затем, наоборот, вновь возрастает роль тактильного раздражителя и т.д. В результате животное совершает возле объекта ритмичные колебательные движения.

Четко выражена у туфельки и ориентация в вертикальной плоскости, что находит свое выражение в тенденции плыть вверх (отрицательный геотаксис – ориентация по силе земного притяжения). Поскольку у парамеции не были обнаружены специальные органеллы гравитационной чувствительности, было высказано предположение, что содержимое пищеварительных вакуолей действует у нее наподобие органов равновесия – статоцистов высших животных. Обоснованность такого толкования подтверждается тем, что туфелька, проглотившая в опыте металлический порошок, плывет уже не вверх, а вниз, если над ней поместить магнит. В таком случае содержимое вакуоли (металлический порошок) уже давит не на нижнюю ее часть, а, наоборот, на верхнюю, чем, очевидно, и обусловливается переориентация направления движения животного на 180°.

Кроме упомянутых, таксисные реакции установлены у простейших также в ответ на химические раздражения (хемотаксисы), электрический ток (гальванотаксисы) и др. На свет часть простейших реагируют слабо, у других же эта реакция выражена весьма четко. Так, фототаксисы проявляются у некоторых видов амеб и инфузорий.

 

Светочувтсвтиельность. В отличие от инфузорий, у многих жгутиковых, особенно у эвглены, положительный фототаксис выражен весьма четко. Биологическое значение этого таксиса не вызывает сомнений, так как аутотрофное питание эвглены требует солнечной энергии. Эвглена плывет к источнику света по спирали, одновременно, как уже упоминалось, вращаясь вокруг собственной оси. Это имеет существенное значение, так как у эвглены, как и у некоторых других простейших, сильно и положительно реагирующих на свет, имеются хорошо развитые аналоги фоторецепторов. Это пигментные пятна, иногда снабженные даже отражающими образованиями, позволяющими животному локализовать световые лучи. Продвигаясь к источнику света описанным образом, эвглена поворачивает к нему то «слепую» (спинную) сторону, то «зрячую» (брюшную). И каждый раз, когда последняя (с незаслоненным участком «глазка») оказывается обращенной к источнику света, производится корректировка траектории движения путем поворота на определенный угол в сторону этого источника. Следовательно, движение эвглены к свету определяется положительным фотоклинотаксисом, причем в случае попадания ее под воздействие двух источников света попеременное раздражение фоторецептора то слева, то справа придает движению эвглены внешнее сходство с тропотаксисным поведением двустороннесимметричных животных, обладающих парными глазами.

«Глазки» описаны и у других жгутиковых. Особую сложность фоторецепция достигает у одного из представителей динофлагеллят, у которого имеются уже аналоги существенных частей глаза многоклеточных животных, пигментное пятно снабжено не только светонепроницаемым экраном (аналог пигментной оболочки), но и светопроницаемым образованием в форме сферической линзы (аналог хрусталика). Такой «глазок» позволяет не только локализовать световые лучи, но и собирать, в известной степени фокусировать их.

 

Пластичность поведения простейших. Итак, поведение простейших и в моторной и в сенсорной сфере у ряда видов уже достигает известной сложности.

У организмов, лишенных нервной системы, обнаружен целый ряд форм адаптивного поведения, напоминающих обучение.

Сенсибиллизация. Сенсибилизацией называется повышение чувствительности организма к воздействию какого-либо агента, способствующей модификации поведения. Ярким примером такого рода может служить так называемое обучение инфузорий.

В обычных условиях инфузории-туфельки передвигаются в воде как бы толчками. Их движения носят хаотичный характер. Никаких закономерностей и ни малейшей целенаправленности в поведении инфузорий не наблюдается.

Если же инфузорию перенести в небольшую емкость, имеющую форму круга, глубиной не больше 1 мм и диаметром 3–5 мм, то ее поведение резко изменится. Сначала она будет хаотично двигаться по сосуду, изредка натыкаясь на его стенки. Однако уже через 3–4 мин поведение инфузории изменится: путь ее станет прямолинейным, и вскоре она начнет описывать правильную геометрическую фигуру, форма которой зависит от формы сосуда. Так, в круглом аквариуме это будет почти правильной восьмиугольник; в квадратном – квадрат, расположенный косо по отношению к стенкам аквариума; в пятиугольном сосуде – пятиугольник; в шестиугольном – шестиугольник и т.д. При этом, будучи перенесенными в сосуд другой формы, инфузории в течение некоторого времени продолжают двигаться по предыдущей траектории. Подобных опытов было проведено множество. Почти всегда инфузории демонстрировали высокую способность к обучению. Выработанные у них реакции по своему характеру и по способу их образования напоминали условные рефлексы высших животных. Некоторые исследователи их так и называли: «условные рефлексы простейших». Более тщательно проведенные исследования полностью опровергли представления о высоких способностях инфузорий. Грубая ошибка произошла из-за незнания особенностей врожденных форм поведения туфелек. Наблюдения за инфузориями показали, что хаотические движения сохраняются у них только до тех пор, пока они находятся в культуральной жидкости, где всегда много углекислого газа и мало кислорода. Когда ту же жидкость наливают в экспериментальный сосуд тонким слоем, она обогащается кислородом. В таких условиях движения инфузорий становятся прямолинейными, а при столкновении с препятствием туфелька отскакивает от него под углом 20°. Поэтому после помещения инфузории в широкий и мелкий сосуд путь инфузории начинает повторять его конфигурацию. Подобная реакция на изменения внешней среды представляет собой типичную сенсибилизацию первого типа, но никак не обучение.

Привыкание простейших. Примером подобного элементарного накопления индивидуального опыта служит привыкание. Напомним, что под привыканием понимается прекращение реакции на постоянно действующий раздражитель. По принятой системе классификации обучения его относят к типу неассоциативного обучения.

Способность к выработке привыкания обнаружена у самых примитивных организмов. Из одноклеточных существ для подобных исследований чаще всего используют исключительно крупную разноресничную инфузорию спиростомум амбигуум. Эта инфузория достигает в длину 2 мм и хорошо видна невооруженным глазом.

Если к поверхности крохотного аквариума, где находится спиростомум, прикоснуться кончиком карандаша, вызвав колебание пленки поверхностного натяжения, а вслед за ней и толщи воды, все находящиеся там инфузории мгновенно, как по команде, прекратят движение и съежатся в комочек. Испуг от неожиданного вторжения в их маленький мир скоро пройдет, тела инфузорий вытянутся, и они как ни в чем не бывало продолжат свое движение. Притрагиваясь раз за разом к поверхности аквариума, удается приучить его обитателей меньше бояться безобидного воздействия. Скоро инфузории перестанут полностью сжиматься и будут быстрее возобновлять обычное движение. Проявив настойчивость, можно приучить спиростомумов совершенно не обращать внимание на сотрясение воды, не сжиматься в комочек и не прекращать движения.

Безусловно, в лаборатории инфузорий «дрессируют», не прибегая к помощи карандаша. Их приучают к легкой вибрации аквариума, создаваемой специальным прибором. Если включать вибрацию с интервалами в 7 сек., то уже через 1–10 мин станет заметно, что инфузории не так сильно боятся ее. Продолжая тренировку, можно через 13–47 мин добиться полного привыкания.

У простейших привыкание весьма недолговечно и не поддается тренировке. Если через час после выработки у инфузорий привыкания проверить его сохранность, то окажется, что спиростомумы полностью отвыкли от вибрации и снова реагируют на нее обычной оборонительной реакцией. Чтобы они привыкли опять, потребуется столько же предъявлений раздражителя, сколько было сделано первый раз. Сравнение шести последовательных сеансов тренировки привыкания, проведенных с часовым интервалом, не обнаруживает какого-либо ускорения его восстановления к концу опыта. У инфузории стентнор память значительно лучше. Эта крупная сидячая инфузория, напоминающая крохотную воронку, способна 3–6 ч помнить о том, что слабого механического раздражения бояться не нужно.

Кроме вибрации, у спиростомумов удалось выработать привыкание к прикосновению и электрическому воздействию. И в этих случаях «привычка» не бояться внезапного действия раздражителя сохранялась 30–50 мин, и при попытке ее восстановить облегчающего влияния предыдущей тренировки не было заметно (цит. по Сергеев, 1986). Говоря о привыкании простейших, важно подчеркнуть, что этот феномен проявляется не только у ресничных инфузорий, но и у более простых одноклеточных, например амебы. Таким образом, как показали многочисленные эксперименты, приобретенное поведение простейших обладает свойствами, общими с таковыми у животных, имеющих нервную систему, и одновременно несет черты более примитивной организации.

Л.Г. Воронин (1968) относит привыкание простейших к несигнальной форме индивидуального приспособления.

Сам по себе факт наличия у животных, лишенных даже зачатков нервной системы, элементов поведения, напоминающих процесс обучения, представляет исключительный интерес для общих представлений об эволюции психики (см. Хрестомат. 14.2).

 

2. Кишечнополостные. У представителей типа кишечнополостных уже отмечаются зачатки нервной системы.

В своей простейшей форме она встречается у гидр и актиний, представляя собою нервную сеть, состоящую из разбросанных нервных клеток с отростками, переплетающимися между собой. Такая нервная сеть не имеет особых центров, и возбуждение проходит по всем направлениям. Подобная первичная нервная система называется рассеянной, или диффузной.

У некоторых кишечнополостных, в связи с усложнением строения организма, нервная ткань начинает концентрироваться в определенных местах тела. У медуз, например, на краю зонтика, где находятся щупальцы и органы чувств, нервная ткань образует кольцевой тяж. Отсюда во все стороны отходит сеть нервных клеток с длинными отростками.

Наблюдения и опыты показывают, что кишечнополостные животные довольно тонко различают механические, химические, световые и температурные раздражители. В опытах Леба актинии втягивали щупальцами кусочки мяса и переваривали их, в то же время они отталкивали бумажные трубки, по величине и форме сходные с мясом.

Рассеянная нервная система не всегда приводит к единству действия всех частей организма как целого. При слабых раздражителях, например, наблюдаются движения отдельных щупальцев актиний. Точно так же реагируют отделенные от организма части гидры, сохранившие нервные клетки. Длительно действующее раздражение постепенно распространяется по всему организму. Вопрос о способности кишечнополостных формировать условные рефлексы в настоящее время остается открытым. Результаты немногочисленных экспериментальных попыток выработки условных реакций у различных видов этого типа не выявили свойств приобретенных реакций, которые можно было бы определить как условно-рефлекторные.

В то же время неассоциативное обучение по типу привыкания у кишечнополостных осуществляется лучше и сохраняется дольше, чем у простейших.

Например, стебельчатая гидра, как и инфузории, пугается вибрации. Однако память у нее надежнее: через час после выработки еще удается обнаружить привыкание, но через сутки никаких следов от него не остается. Голодная гидра хватает любой объект, коснувшийся ее щупалец, и даже может заглотить несъедобную добычу. Поймав первый раз крохотную кварцевую песчинку, гидра под ее тяжестью валится на бок. В таком положении животное находится довольно долго. В лупу видно, с каким трудом она вытаскивает щупальца из-под придавившей их песчинки. Когда ей наконец удается освободиться от добычи и принять нормальную позу, можно кинуть новую песчинку. Гидра непременно соблазнится и схватит очередное подношение. Животное долго будет «охотиться» на несъедобный кварц, но время освобождения от него станет постепенно сокращаться, а 25–35–ю песчинку животное уже не станет удерживать. Это не усталость. Наткнувшуюся на нее дафнию гидра непременно поймает и отправит по назначению. Привыкание к песчинке сохраняется от 40 мин до нескольких часов. Даже через сутки можно еще обнаружить следы привыкания: второй раз научить гидру не трогать несъедобную добычу оказывается легче.

В результате выяснилось, что при интервалах, сравнимых со временем сохранения следа после однократного привыкания, наблюдается ярко выраженное ускорение привыкания от опыта к опыту. Этот результат представляет интерес, поскольку именно по степени выраженности тренированности у животных различного уровня филогенеза (или нейронных систем различной сложности) при различных интервалах между приложениями можно судить о степени консолидации следа и, возможно, определить четкий критерий различия памяти кратковременной и долговременной – основных функциональных механизмов поведения.

Таким образом, прогресс в развитии функциональных механизмов поведения у кишечнополостных по сравнению с простейшими заключается в появлении нового свойства привыкания – тренированности (см. Хрестомат. 14.2).

 

3. Плоские черви. Низшие ресничные черви, или турбеллярии, имеют значительно более совершенную нервную систему по сравнению с ранее описанными группами животных.

Одна из замечательных филогенетических особенностей ресничных червей, к которым относятся планарии, заключается в том, что они представляют уровень «перехода» диффузной нервной сети в концентрированную систему. У ресничных червей впервые в эволюции нервные элементы концентрируются на переднем конце тела, т.е. появляются зачатки цефализации. Интегрирующее значение нервной системы на этой стадии филогенеза выражается в регулировании церебральным ганглием важных функций организма.

Церебральный ганглий планарий состоит в основном из мелких, малодифференцированных клеток. Основной особенностью гистологического строения ганглия служит наличие в нем большого количества мышечных и паренхиматозных клеток, выполняющих, по-видимому, нейросекреторные функции. Только отдельные («гигантские») клетки могут быть с большей степенью уверенности классифицированы как нервные.

Таким образом, появившаяся впервые в эволюции у планарий, цефализация представлена здесь в своей примитивной форме и к ней приурочена приобретаемая в индивидуальной жизни организма примитивная форма нестойких условных рефлексов. Вопрос о выработке истинных классических условных рефлексов у низших (ресничных) червей, представителями которых являются планарии, долгое время считался дискуссионным.

В результате статистической обработки результатов исследования авторы пришли к выводу о возможности выработки классических условных рефлексов у планарий. Временная связь у всех планарий была нестойкой, количество положительных реакций из каждых 10 сочетаний условного сигнала с безусловным редко превышало 50%.

Из анализа экспериментального материала следует, что условные рефлексы у изученных пресноводных планарий недостаточно стойки, не обладают всеми качествами классических условных рефлексов. Они характеризуются следующими признаками, общими для экологически различных видов животных: непрочностью в течение одного опыта, непрочностью от опыта к опыту (упрочение не наступало даже после 335 сочетаний условного сигнала с безусловным), угасанием реакций после 200–300 сочетаний, несмотря на подкрепление. Перечисленные свойства условных рефлексов не являются отражением индивидуальных особенностей отдельных видов, так как они характерны для животных с различной экологией. Таким образом, подобные реакции можно отнести к категории лишь примитивных нестойких условных рефлексов, свойственных животным определенного уровня филогенетического развития.

У планарий, предпочитающих держаться в затемненных местах, удалось выработать привыкание к свету, но животное, прошедшее начальный «курс» обучения, не кажется поумневшим. И все же плоские черви способнее, чем одноклеточные и кишечнополостные животные. Предъявляя им слабые раздражители, которых они и так не пугаются, у них можно образовать привыкание к более сильным (см. Хрестомат. 14.2).

 

5. Общая характеристика низшего уровня элементарной сенсорной психики (по Фабри, 1976). Итак, на низшем уровне элементарной сенсорной психики поведение животных выступает в достаточно разнообразных формах, но все же с примитивными проявлениями психической активности. Простейшим свойственна элементарная форма психического отражения – ощущение, т.е. чувствительность в собственном смысле слова. Как утверждает Леонтьев, даже низший уровень психического отражения не является низшим уровнем отражения вообще, существующего в живой природе, в частности растениям присуще допсихическое отражение, при котором имеют место лишь процессы раздражимости.

Степень и качества психического отражения определяются тем, насколько развиты способности к движению, пространственно-временной ориентации и к изменению врожденного поведения. У простейших встречаются разнообразные формы передвижения в водной среде только на самом примитивном уровне инстинктивного поведения – кинезов. Ориентация поведения осуществляется только на основе ощущений и ограничена элементарными формами таксисов, позволяющими животному избегать неблагоприятные внешние условия.

Это значит, что поисковая фаза инстинктивного поведения у них еще крайне плохо развита и лишена сложной, многоэтапной структуры. Во многих случаях эта фаза вообще отсутствует. Во всем этом проявляется не только исключительная примитивность инстинктивного поведения на данном уровне, но и предельная скудность содержания психического отражения. Как уже отмечалось, в отдельных случаях у простейших встречаются и положительные элементы пространственной ориентации. Так, например, амеба в состоянии находить пищевой объект на расстоянии до 20–30 микрон. Зачатки активного поиска жертвы существуют, очевидно, и у хищных инфузорий. Однако во всех этих случаях положительные таксисные реакции еще не носят характера подлинного поискового поведения, поэтому эти исключения не меняют общую оценку поведения простейших, а тем более характеристику низшего уровня элементарной сенсорной психики в целом. На этом уровне дистантно распознаются преимущественно отрицательные компоненты среды; биологически «нейтральные» же признаки положительных компонентов, как правило, еще не воспринимаются на расстоянии как сигнальные. Таким образом, психическое отражение на низшем уровне своего развития выполняет в основном сторожевую функцию и отличается поэтому характерной «однобокостью». Что касается пластичности поведения простейших, то и здесь простейшие обладают лишь самыми элементарными возможностями. Это вполне закономерно: элементарному инстинктивному поведению может соответствовать лишь элементарное неассоциативное научение, представленное наиболее примитивными формами.

Тем не менее при всей своей примитивности поведение простейших является все же достаточно сложным и гибким, в тех пределах, которые необходимы для жизни в своеобразных условиях микромира. Эти условия отличаются рядом специфических особенностей, и этот мир нельзя себе представить как просто во много раз уменьшенный макромир. В частности, среда микромира является менее стабильной, чем среда макромира, что проявляется, например, в периодическом высыхании маленьких водоемов, С другой стороны, непродолжительность жизни микроорганизмов и частая смена их поколений делают излишним – развитие более сложных форм накопления индивидуального опыта. Как уже отмечалось, простейшие не являются однородной группой животных, и различия между их разными формами очень велики. Высшие представители этого типа во многих отношениях развивались в своеобразных формах неклеточного строения параллельно низшим многоклеточным беспозвоночным животным. В результате высокоразвитые простейшие проявляют подчас даже более сложное поведение, чем некоторые многоклеточные беспозвоночные, также стоящие на низшем уровне элементарной сенсорной психики. К этому же уровню относятся и некоторые представители типа хордовых, например асцидии. Это служит наглядным подтверждением отмеченной выше закономерности: психологическая классификация не вполне совпадает с зоологической, так как одни представители одной и той же таксономической категории могут еще находиться на более низком психическом уровне, а другие – уже на более высоком.

 

Высший уровень элементарной сенсорной психики (по Фабри, 1976). Следующий, высший уровень стадии элементарной сенсорной психики, которого достигают живые существа типа иглокожих, кольчатых червей и брюхоногих моллюсков, характеризуется появлением первых элементарных ощущений, а также органов манипулирования в виде щупальцев и челюстей. Наиболее изученными из них являются кольчатые черви, к которым относятся живущие в морях многощетинковые черви (полихеты), малощетинковые черви (олигохеты), наиболее известным представителем которых является дождевой червь, и пиявки. Характерным признаком их строения является внешняя и внутренняя метамерия: тело состоит из нескольких, большей частью идентичных, сегментов, каждый из которых содержит «комплект» внутренних органов, в частности пару симметрично расположенных ганглиев с нервными комиссурами, в результате нервная система кольчатых червей имеет вид «нервной лестницы».

На этом уровне развития психики находятся и низшие хордовые, которые вместе с позвоночными составляют тип хордовых. К низшим хордовым относятся оболочники и бесчерепные. Оболочники, или асцидии – морские животные, часть которых ведет неподвижную жизнь. Бесчерепные представлены всего двумя семействами с тремя родами мелких морских животных, наиболее известное из которых – ланцетник.

Изменчивость поведения животных, находящихся на этом уровне развития психики дополняется появлением способности к приобретению и закреплению жизненного опыта. На этом уровне уже существует чувствительность. Двигательная активность совершенствуется и приобретает характер целенаправленного поиска биологически полезных и избегания биологически вредных воздействий.

Виды приспособительного поведения, приобретаемые в результате мутаций и передаваемые из поколения в поколение благодаря естественному отбору, оформляются в качестве инстинктов.

Возникновение нервной системы беспозвоночных. Нервная система впервые появляется у низших многоклеточных беспозвоночных. Возникновение нервной системы – важнейшая веха в эволюции животного мира, и в этом отношении даже примитивные многоклеточные беспозвоночные качественно отличаются от простейших. Наличие нервной ткани способствует резкому ускорению проводимости возбуждения: в протоплазме скорость проведения возбуждения не превышает 1–2 микрон в секунду, но даже в наиболее примитивной нервной системе, состоящей из нервных клеток, она составляет 0,5 метра в секунду!

Нервная система существует у низших многоклеточных в весьма разнообразных формах: сетчатой (например, у гидры), кольцевой (медузы), радиальной (морские звезды) и билатеральной. Билатеральная форма представлена у низших плоских червей и примитивных моллюсков еще только сетью нервных клеток, располагающейся вблизи поверхности тела, в которой выделяются более мощным развитием несколько продольных тяжей. По мере своего прогрессивного развития нервная система погружается под мышечную, ткань, продольные тяжи становятся более выраженными, особенно на брюшной стороне тела. Одновременно все большее значение приобретает передний конец тела, появляется голова а вместе с ней и головной мозг – скопление и уплотнение нервных элементов в переднем конце. Наконец, у высших червей центральная нервная система уже вполне приобретает типичное строение «нервной лестницы», при котором головной мозг располагается над пищеварительным трактом и соединен двумя симметричными коммисурами («окологлоточное кольцо») с расположенными на брюшной стороне подглоточными ганглиями и далее с парными брюшными нервными стволами. Существенными элементами являются здесь ганглии, поэтому подобную нервную систему называют ганглионарной, или «ганглионарной лестницей». У некоторых представителей данной группы например, пиявок, нервные стволы сближаются настолько, что получается «нервная цепочка».

От ганглиев отходят мощные проводящие волокна, которые и составляют нервные стволы. В гигантских волокнах нервные импульсы проводятся значительно быстрее благодаря их большому диаметру и малому числу синаптических связей (мест соприкосновения аксонов одних нервных клеток с дендритами и клеточными телами других клеток). Головные ганглии достигают лучшего развития у более подвижных животных, обладающих и наиболее развитыми рецепторными системами.

Зарождение и эволюция нервной системы обусловлены необходимостью координации разнокачественных функциональных единиц многоклеточного организма, согласования процессов, происходящих в разных частях его при взаимодействии с внешней средой, обеспечения деятельности сложно устроенного организма как единой целостной системы. Только координирующий и организующий центр, каким является центральная нервная система, может обеспечить гибкость и изменчивость реакции организма в условиях многоклеточной организации.

Огромное значение имел в этом отношении и процесс цефализации, т.е. обособление головного конца организма и сопряженное с ним появление головного мозга. Только при наличии головного мозга возможно подлинно централизованное «кодирование» поступающих с периферии сигналов и формирование целостных «программ» врожденного поведения, не говоря уже о высокой степени координации всей внешней активности животною.

Разумеется, уровень психического развития зависит не только от строения нервной системы. Так, например, близкие к кольчатым червям коловратки также обладают, как и те, билатеральной нервной системой и мозгом, а также специализированными сенсорными и моторными нервами. Однако, мало отличаясь от инфузории размером, внешним видом и образом жизни, коловратки очень напоминают последних также поведением и не обнаруживают более высоких психических способностей, чем инфузории. Этот пример показывает, что ведущим для развития психической деятельности является не общее строение, а конкретные условия жизнедеятельности животного, характер его взаимоотношений и взаимодействий с окружающей средой.

 

1. Кольчатые черви. Среди большой группы кольчатых червей, являющихся эволюционными потомками плоских червей, особое место занимают представители класса олигохета – дождевые черви, на которых проводились основные опыты, связанные с изучением их реакций на разнообразные агенты среды и с выработкой условных рефлексов. У червей нервные узлы (ганглии) расположены вдоль всего тела в виде симметричной цепочки. Каждый узел состоит из грушевидных клеток и густого сплетения нервных волокон. От клеток отходят нервные волокна к мышцам и к внутренним органам (двигательные волокна). Под кожным покровом червя расположены чувствительные клетки, которые соединяются своими отростками (чувствительные волокна) с нервными узлами. Нервная система подобного типа называется цепочечной, или ганглиозной. Тело дождевого червя состоит из ряда сегментов-члеников. Каждый сегмент имеет свой собственный нервный узел и может отвечать на раздражение, будучи совершенно отделен от всего остального тела. Но все узлы соединены между собой перемычками, и организм действует как целое. Головной узел нервной системы расположен в верхней части головы, получает и перерабатывает наибольшее количество раздражений. Он устроен значительно сложнее, чем все остальные узлы нервной системы червя.

Движения кольчатых червей. Итак, двигательная активность кольчатых червей отличается большим многообразием и достаточной сложностью. Обеспечивается это сильно развитой мускулатурой, состоящей из двух слоев: внешнего (подкожного), состоящего из кольцевых волокон, и внутреннего, состоящего из мощных продольных мышц. Последние простираются, несмотря на сегментацию, от переднего до заднего конца туловища. Ритмичные сокращения продольной и кольцевой мускулатуры кожно-мышечного мешка обеспечивают движения: червь ползет, вытягивая и сокращая, расширяя и сужая отдельные части своего тела. Так, у дождевого червя вытягивается и сужается передняя часть тела, затем то же самое происходит последовательно со следующими сегментами. В результате по телу червя пробегают «волны» сокращений и расслаблений мускулатуры.

У кольчатых червей впервые в эволюции животного мира появляются подлинные парные конечности. У них на каждом сегменте имеется по паре выростов, служащих органами передвижения, получивших название параподий, которые снабжены специальными мышцами, двигающими их вперед или назад. Зачастую параподии имеют ветвистое строение. Каждая ветвь снабжена опорной щетинкой и, кроме того, венчиком из щетинок, имеющих у разных видов различную форму. От параподин отходят и щупальцевидные органы тактильной и химической чувствительности. Особенно длинными и многочисленными последние являются на головном конце, где на спинной стороне располагаются глаза (одна или две пары), а в ротовой полости или на особом (выпячиваемом) хоботке-челюсти. В захвате пищевых объектов могут участвовать и нитевидные щупальца на головном конце червя.

У ряда многощетинковых и всех малощетинковых червей параподии редуцированы (отсюда и название последних), остались лишь посегментно расположенные пучки щетинок. Так, у дождевого червя на каждом сегменте находится по четыре пары очень коротких, неразличимых невооруженным глазом щетинок, которые, однако, наподобие параподий служат для передвижения животного: являясь достаточно крепкими подвижными рычагами, они обеспечивают вместе с сокращениями кожно-мышечного мешка поступательное движение червя. С другой стороны, растопыривая свои щетинки и упираясь ими в грунт, дождевой червь настолько прочно фиксирует свое тело в земле, что практически невозможно вытащить его оттуда в неповрежденном виде. У некоторых других малощетинковых червей щетинки развиты значительно сильнее и представлены в большем количестве.

Поведение кольчатых червей. Кольчатые черви обитают в морях и пресноводных водоемах, но некоторые ведут и наземный образ жизни, передвигаясь ползком по субстрату или роясь в рыхлом грунте. Морские черви отчасти пассивно носятся течениями воды как составная часть планктона, но основная масса ведет придонный образ жизни в прибрежных зонах, где селится среди колоний других морских организмов или в расщелинах скал. Многие виды живут временно или постоянно в трубках, которые в первом случае периодически покидаются их обитателями, а затем вновь разыскиваются. Особенно хищные виды отправляются из этих убежищ регулярно на «охоту». Трубки строятся из песчинок и других мелких частиц, которые скрепляются выделениями особых желез, чем достигается большая прочность построек. Неподвижно сидящие в трубках животные ловят свою добычу (мелкие организмы), подгоняя к себе и процеживая воду с помощью венчика щупальцев, который высовывается из трубки, или же прогоняя сквозь нее поток воды (в этом случае трубка открыта на обоих концах).

В противоположность сидячим формам свободноживущие черви активно разыскивают свою пищу, передвигаясь по морскому дну: хищные виды нападают на других червей, моллюсков, ракообразных и иных сравнительно крупных животных, которых хватают челюстями и проглатывают; растительноядные отрывают челюстями куски водорослей; другие черви (их большинство) ползают и роются в придонном иле, проглатывают его вместе с органическими остатками или собирают с поверхности дна мелкие живые и мертвые организмы.

Малощетинковые черви ползают и роются в мягком грунте или придонном иле, некоторые виды способны плавать. Во влажных тропических лесах некоторые малощетинковые кольчецы вползают даже на деревья. Основная масса малощетинковых червей питается детритом, всасывая слизистый ил или прогрызаясь сквозь почву. Но существуют и виды, поедающие мелкие организмы с поверхности грунта, процеживающие воду или отгрызающие куски растений. Несколько видов ведут хищный образ жизни и захватывают мелких водных животных, резко открывая ротовое отверстие. В результате добыча всасывается с потоком воды.

Пиявки хорошо плавают, производя туловищем волнообразные движения, ползают, роют ходы в мягком грунте, некоторые передвигаются по суше. Помимо кровососущих, существуют также пиявки, которые нападают на водных беспозвоночных и проглатывают их целиком. Наземные пиявки, обитающие во влажных тропических лесах, подстерегают свои жертвы на суше, в траве или на ветках деревьев и кустарников. Эти пиявки могут довольно быстро двигаться. В передвижении наземных пиявок по субстрату большую роль играют присоски: животное вытягивает сперва туловище, затем присасывается к субстрату головной присоской, притягивает к ней задний конец туловища (с одновременным сокращением последнего), присасывается задней присоской и т.д.

Экспериментальное изучение поведения кольчатых червей. Жизнедеятельность дождевых червей подробно описал Ч. Дарвин. В ходе его опытов выяснилось, что они по-разному реагируют на зрительные, осязательные, обонятельные и температурные раздражители. Р. Йеркс и ряд других ученых исследовали у дождевых червей способность к образованию простейших навыков. Для этой цели чаще всего использовалась методика выработки оборонительных условных реакций в Т-образном лабиринте. Черви обучались поворачивать в правый или левый рукав лабиринта. Безусловным раздражителем служил переменный ток различной интенсивности, а условным – сам лабиринт, элементы которого, вероятно, воспринимались проприоцептивной и тактильной афферентациями. Критерием выработки рефлекса служило увеличение числа поворотов в рукав лабиринта, где животные не подвергались электрической стимуляции. В опытах Р. Йеркса черви обучались правильному выбору стороны после 80–100 сочетаний.

Еще более четкие условные рефлексы удается вырабатывать у многощитинковых червей – полихет. Так, у нереисов удавалось выработать устойчивые условные рефлексы на тактильное раздражение, пищу, свет и вибрацию Анализ результатов показал, что у полихет вырабатываются реакции, обладающие всеми основными свойствами истинных условных рефлексов: возрастание числа положительных ответов от опыта к опыту, высокий максимальный процент положительных реакций (до 80–100) и длительность их сохранения (до 6–15 дней).

Весьма существенно, что выработанная реакция угасала при отсутствии подкрепления и самопроизвольно восстанавливалась. В контрольных опытах – при псевдообуславливании – увеличения числа положительных ответов не наблюдалось.

Выявленные закономерности условно-рефлекторной деятельности полихет коррелируют с относительно дифференцированным мозгом животных. Хорошо известно, что одной из особенностей их мозга является возникновение специального ассоциативного центра – грибовидных тел. Удаление этих отделов мозга приводит к нарушению условных рефлексов, как показано в опытах на пчелах. Таким образом, истинные условные рефлексы как один из достаточных совершенных механизмов, определяющих приобретенное поведение, впервые в эволюции, по-видимому, появляются у полихет (см. Хрестомат. 14.2).

Полихеты вырабатывают привыкание по отношению к сотрясению, вибрации, движущейся тени, уменьшению и увеличению освещенности, электрическому току и другим раздражителям. Живут они в неглубоких норках, которые самостоятельно роют в илистом дне мелководных морских заливов. Эти морские кольчецы – хищники. Большую часть дня они проводят высунувшись «по пояс» из своего жилища и при появлении добычи всегда готовы на нее наброситься. При прикосновении к голове червя, при вибрации, при прохождении над ним тени червь быстро прячется в норку, но уже через минуту вновь выглянет наружу. Если какой-то из этих раздражителей многократно повторять, то через некоторое время полихета перестает обращать на него внимание. Скорость выработки привыкания зависит от природы раздражителей, их силы и величины интервалов между их применениями.

В естественных условиях усложнение поведения выражается в осуществлении достаточно сложных форм инстинктивного поведения в виде роющей, собирательной и строительной деятельности.

 

2. Моллюски. Изменение среды обитания, переход животных из водной среды в наземную и воздушную обусловили возникновение новых функций, связанных с изменением способов передвижения, строения тела, нервной системы и органов чувств. В соответствии с этим изменилось и поведение животных, расширилась их деятельность и усложнились формы отражения ими окружающего мира.

Моллюски представляют собой большую и весьма изменчивую группу. Среди них есть раковинные и безраковинные, водные и наземные, прикрепленные к субстрату и весьма подвижные формы. У всех моллюсков, за исключением одного класса, более или менее обособлена голова, несущая ротовое отверстие. Кроме того, на голове могут быть различные щупальцевидные придатки – «рожки» и глаза. Из других органов чувств обычно имеются органы химического чувства и органы равновесия. Центральная нервная система моллюсков обнаруживает различную степень сложности у представителей разных классов. У более примитивных форм строение нервной системы напоминает таковую кольчатых червей. У других – центральная нервная система уже ясно дифференцирована на несколько пар связанных между собой нервных узлов. Совершенно особняком стоит группа головоногих моллюсков, имеющих достаточно совершенный головной мозг и органы чувств. По уровню развития психики головоногие вполне соответствуют низшим позвоночным.

Достаточно сложное строение имеет нервная система брюхоногих моллюсков. Она состоит из пяти пар хорошо дифференцированных ганглиев: головных, ножных, легочных, брюшных и спинных. Ганглии связаны между собой нервными тяжами. Из органов чувств, кроме пары глаз на голове и пары головных щупальцев, имеющих значение органов осязания, у улиток развиты органы равновесия. В виде хорошо иннервированных статоцистов. Для улиток характерны и органы химического чувства – осфридии, лежащие у основания жабер и служащие для опробирования воды, попадающей в мантию. У сухопутных улиток имеется вторая пара головных щупальцев, выполняющих функции органов обоняния. Кроме того, кожа улиток богата разнообразными чувствительными клетками.

Поведение брюхоногих моллюсков, обитающих в разных средах, уже достаточно разнообразно. В частности, они проявляют довольно сложное половое поведение, выражающееся в своеобразных брачных танцах. Оплодотворенные яйца улитки откладывают в специально выкопанные ямки, отверстия которых после окончания кладки тщательно заделывают. Некоторые виды заключают яйца в специальный кокон из застывающей на воздухе пены.

Условные рефлексы у улиток вырабатываются примерно так же как у кольчатых червей, аналогичным образом они обучаются и в Т-образном лабиринте.

 

3. Общая характеристика высшего уровня элементарной сенсорной психики. Как уже отмечалось, наиболее низкоорганизованные формы многоклеточных беспозвоночных стоят на том же уровне психического развития, что и высшие представители простейших. Но то, что здесь не обнаруживаются существенные различия в поведении, несмотря на глубокие различия в строении, не должно нас удивлять, ибо, как уже говорилось, простейшие олицетворяют собой совершенно особую, рано отклонившуюся филогенетическую ветвь, которая до известных пределов развивалась параллельно ветви низших многоклеточных животных.

Поведение кольчатых червей вполне отвечает стадии элементарной сенсорной психики, ибо слагается из движений, ориентированных лишь по отдельным свойствам предметов и явлений, которые, по Леонтьеву, оповещают о появлении жизненно важных условий среды, от которых зависит осуществление основных биологических функций животных. Эта ориентация осуществляется на основе одних лишь ощущений. Перцепция, способность к предметному восприятию, у них еще отсутствует. Не исключено, правда, что у некоторых наземных улиток, как и у упомянутых выше свободно плавающих хищных моллюсков и полихет, уже намечаются зачатки этой способности. Так, виноградная улитка обходит преграду еще до прикосновения к ней, ползет вдоль нее, но только если преграда не слишком велика; если же изображение преграды занимает всю сетчатку, улитка наталкивается на нее. Не реагирует она и на слишком мелкие предметы.

В поведении кольчатых червей еще преобладает избегание неблагоприятных внешних условий, как это имеет место у простейших. У высших представителей рассматриваемой группы беспозвоночных впервые появляются зачатки конструктивной деятельности, агрессивного поведения, общения, у них уже отмечаются зачатки сложных форм инстинктивного поведения, обеспечивающие значительно более точную и экономную ориентацию животного в пространстве, а тем самым и более полноценное использование пищевых ресурсов в окружающей среде.

Давая общую оценку поведению низших многоклеточных беспозвоночных, Фабри отмечает, что, очевидно, первично главная функция еще примитивной нервной системы состояла в координации внутренних процессов жизнедеятельности в связи со все большей специализацией клеток и новых образований – тканей, из которых строятся все органы и системы многоклеточного организма. «Внешние» же функции нервной системы определяются степенью внешней активности, которая у этих животных находится на еще невысоком уровне, зачастую не более высоком, чем у высших представителей простейших. Вместе с тем строение и функции рецепторов, как и «внешняя» деятельность нервной системы, значительно усложняются у животных, ведущих более активный образ жизни. Особенно это относится к свободно живущим, активно передвигающимся формам (Фабри, 1976).

 







Дата добавления: 2015-10-19; просмотров: 448. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия