Системы счислений.
Система счисления — это совокупность приемов и правил, по которым числа записываются и читаются. Существуют позиционные и непозиционные системы счисления. В непозиционных системах счисления вес цифры (т. е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти. В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая — 7 единиц, а третья — 7 десятых долей единицы. Сама же запись числа 757,7 означает сокращенную запись выражения 700 + 50 + 7 + 0,7 = 7 . 102 + 5 . 101 + 7 . 100 + 7 . 10—1 = 757,7. Любая позиционная система счисления характеризуется своим основанием. За основание системы можно принять любое натуральное число — два, три, четыре и т.д. Следовательно, возможно бесчисленное множество позиционных систем: двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием q означает сокращенную запись выражения an-1 qn-1 + an-2 qn-2 +... + a1 q1 + a0 q0 + a-1 q-1 +... + a-m q-m,
Для перевода целого десятичного числа N в систему счисления с основанием q необходимо N разделить с остатком ("нацело") на q, записанное в той же десятичной системе. Затем неполное частное, полученное от такого деления, нужно снова разделить с остатком на q, и т.д., пока последнее полученное неполное частное не станет равным нулю. Представлением числа N в новой системе счисления будет последовательность остатков деления, изображенных одной q -ичной цифрой и записанных в порядке, обратном порядку их получения. Пример: Переведем число 75 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:
Ответ: 7510 = 1 001 0112 = 1138 = 4B16. Перевод в десятичную систему числа x, записанного в q -ичной cистеме счисления (q = 2, 8 или 16) в виде xq = (anan-1 ... a0, a-1 a-2... a-m)q сводится к вычислению значения многочлена x10 = an qn + an-1 qn-1 + …+ a0 q0 + a-1 q -1 + a-2 q-2 +... + a-m q-m
Примеpы:
1. Перевести данное число из десятичной системы счисления в двоичную: Решение. 464 | 0 380 | 0 |1875 115 | 1 |94 232 | 0 190 | 0 0|375 57 | 1 1|88 116 | 0 95 | 1 0|75 28 | 0 1|76 58 | 0 47 | 1 1|5 14 | 0 1|52а) 29 | 1 б) 23 | 1 1|0 в) 7 | 1 1|04 14 | 0 11 | 1 3 | 1 0|08 7 | 1 5 | 1 1 | 1 0|16 3 | 1 2 | 0 1 | 1 1 | 1а) 464(10) = 111010000(2); б) 380,1875(10) = 101111100,0011(2); в) 115,94(10) 1110011,11110(2) (в настоящем случае было получено шесть знаков после запятой, после чего результат был округлен).
5.3.Как порождаются целые числа в позиционных системах счисления? В каждой системе счисления цифры упорядочены в соответствии с их значениями: 1 больше 0, 2 больше 1 и т.д. Продвинуть цифру 1 значит заменить её на 2, продвинуть цифру 2 значит заменить её на 3 и т.д. Продвижение старшей цифры (например, цифры 9 в десятичной системе) означает замену её на 0. В двоичной системе, использующей только две цифры — 0 и 1, продвижение 0 означает замену его на 1, а продвижение 1 — замену её на 0. Целые числа в любой системе счисления порождаются с помощью Правила счета: Применяя это правило, запишем первые десять целых чисел
5.4.Какие системы счисления используют специалисты для общения с компьютером? Кроме десятичной широко используются системы с основанием, являющимся целой степенью числа 2, а именно:
Полезно запомнить запись в этих системах счисления первых двух десятков целых чисел:
Из всех систем счисления особенно проста и поэтому интересна для технической реализации в компьютерах двоичная система счисления. Почему люди пользуются десятичной системой, а компьютеры — двоичной? Люди предпочитают десятичную систему, вероятно, потому, что с древних времен считали по пальцам, а пальцев у людей по десять на руках и ногах. Не всегда и не везде люди пользуются десятичной системой счисления. В Китае, например, долгое время пользовались пятеричной системой счисления. А компьютеры используют двоичную систему потому, что она имеет ряд преимуществ перед другими системами:
Недостаток двоичной системы — быстрый рост числа разрядов, необходимых для записи чисел. Перевод чисел из десятичной системы в двоичную и наоборот выполняет машина. Однако, чтобы профессионально использовать компьютер, следует научиться понимать слово машины. Для этого и разработаны восьмеричная и шестнадцатеричная системы. Числа в этих системах читаются почти так же легко, как десятичные, требуют соответственно в три (восьмеричная) и в четыре (шестнадцатеричная) раза меньше разрядов, чем в двоичной системе (ведь числа 8 и 16 — соответственно, третья и четвертая степени числа 2). Перевод восьмеричных и шестнадцатеричных чисел в двоичную систему очень прост: достаточно каждую цифру заменить эквивалентной ей двоичной триадой (тройкой цифр) или тетрадой (четверкой цифр). Например: Чтобы перевести число из двоичной системы в восьмеричную или шестнадцатеричную, его нужно разбить влево и вправо от запятой на триады (для восьмеричной) или тетрады (для шестнадцатеричной) и каждую такую группу заменить соответствующей восьмеричной (шестнадцатеричной) цифрой. Например, 5.5.Как представляются в компьютере целые числа? Целые числа могут представляться в компьютере со знаком или без знака.
|