Электропроводность полупроводников.
К полупроводникам относятся вещества с полностью заполненной валентной зоной и не заполненной зоной проводимости при температуре абсолютного нуля, причем ширина разделяющей их запрещенной зоны может быть невелика (т.н. узкозонные полупроводники) или же достаточно большая (т.н. широкозонные полупроводники). Различают также собственные и примесные полупроводники. К собственным полупроводникам относят химически чистые полупроводники. Их электропроводность может возникнуть только в результате перехода электронов с верхних уровней валентной зоны на нижние уровни зоны проводимости. Освобождение одного из уровней валентной зоны трактуется как возникновение подвижной дырки, в то время как занятие электроном уровня в зоне проводимости – как рождение свободного электрона. Тепловым возбуждением этот процесс обычно реализуется только в узкозонных полупроводниках, в которых таким образом может одновременно существовать как электронная, так и дырочная электропроводность. В широкозонных полупроводниках носители тока не генерируются тепловым образом, и такие вещества адекватны диэлектрикам. Их электропроводность может быть реализована в основном только с помощью примесей. Проводящие свойства примесных полупроводников определяются вводимым в собственные полупроводники относительно малым количеством примесных атомов, которые могут быть либо донорами, либо акцепторами электронов. В первом случае доноры имеют собственный энергетический уровень электрона вблизи «дна» пустой при нулевой абсолютной температуре зоны проводимости, причем они легко отдают этот электрон в зону проводимости путем их теплового возбуждения, что и ведет к рождению свободного электрона. Во втором случае т.н. акцепторы – атомы, способные привязать к себе избыточный электрон, - отбирают этот в сущности валентный электрон от рядового атома кристаллической решетки, создавая в нем вакансию электрона, т.е. дырку, которая может перемещаться по объему, как положительно заряженная частица. Очевидно, чтобы это состоялось, необходимо наличие у примесного атома не занятого уровня энергии электрона, расположенного не далеко от «потолка» валентной зоны. Таким образом, в примесных широкозонных полупроводниках возможны чистая электронная, чистая дырочная или, наконец, смешанная электропроводность. В полупроводнике, обладающем собственной электропроводностью, концентрация электронов, перешедших в зону проводимости, равна концентрации дырок, образовавшихся в валентной зоне, поэтому для удельной электропроводности такого полупроводника справедливо выражение
где В полупроводниках подвижности электронов и дырок (подвижность электронов обычно выше, чем подвижность дырок) зависят от температуры. В таблице приведены в качестве примера значения подвижности электронов и дырок в ряде веществ.
При повышении температуры подвижность как электронов, так и дырок уменьшается за счет увеличения интенсивности тепловых колебаний кристаллической решетки, препятствующих направленному движению носителей. С другой стороны, с ростом температуры концентрации электронов в зоне проводимости и дырок в валентной зоне резко возрастают. Любой полупроводник является изолятором при температурах, близких к абсолютному нулю, так как валентная зона целиком заполнена электронами, а зона проводимости полностью лишена электронов. Электропроводность возникает только при конечной и достаточно большой абсолютной температуре. Средняя кинетическая энергия электронов Ширина запрещенной зоны германия Приведенные оценки получены с учетом предположения, что все электроны обладают средней кинетической энергией. В электронном газе все электроны распределены по энергиям, и при данной температуре некоторая часть электронов имеет энергию, превышающую среднюю энергию. Результаты соответствующих измерений показывают, что собственная проводимость в германии возникает уже при температуре порядка 300-400
Для того, чтобы выяснить физический смысл величины
Как уже отмечалось, в полупроводниках, обладающих примесной проводимостью, локальные донорные или акцепторные энергетические уровни расположены вблизи зоны проводимости или валентной зоны. Определим значение температуры, при которой в германии n-типа происходит переход электронов с донорных уровней в зону проводимости. Для такого перехода средняя энергия электронов на донорном уровне
В реальных условиях примесная проводимость в германии создается при минус
где Функциональная связь
Количество носителей заряда, создаваемых примесями в зоне проводимости, увеличивается с ростом температуры до тех пор, пока примеси не истощатся (точка Б.). Дальнейшее повышение температуры не приводит к увеличению электропроводности. Участок БВ соответствует области истощения примесей. В точке В температура достигает такой величины, что становятся возможными переходы электронов непосредственно из валентной зоны в зону проводимости. На участке ВГ полупроводник имеет собственную проводимость, которая изменяется с ростом температуры в соответствии с формулой (17). Угол наклона прямой ВГ к оси абсцисс пропорционален ширине запрещенной зоны полупроводника
|