Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема 1.3. Системы линейных уравнений





Максимальная учебная нагрузка студента: 6 часов

Обязательная аудиторная нагрузка при заочной форме обучения: 1 час

Самостоятельная работа студента: 5 часов

Содержание:

Понятие системы линейных уравнений. Метод Гаусса решения систем линейных уравнений. Формулы Крамера. Решение систем линейных уравнений по формулам Крамера и методом Гаусса.

Самостоятельная работа студента:

Изучение метода Гаусса решения систем линейных уравнений. Формулы Крамера.

Решение систем линейных уравнений по формулам Крамера и методом Гаусса.

Решение систем линейных однородных уравнений

Вопросы для самоконтроля:

-Что называется системой линейных уравнений.

-Метод Гаусса решения систем линейных уравнений, последовательность метода;

-Формулы Крамера и порядок их применения.

Изучив данную тему, студент должен знать:

Метод Гаусса для решения систем линейных уравнений.

Формулы Крамера для решения систем линейных уравнений.

Изучив данную тему, студент должен уметь:

Применять метод Гаусса для решения систем линейных уравнений. Уметь пользоваться формулами Крамера при решениисистем линейных уравнений.

РАЗДЕЛ 2. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

Тема 2.1. Векторы и операции над ними

Максимальная учебная нагрузка студента: 5 часов

Обязательная аудиторная нагрузка при заочной форме обучения: 0 час

Самостоятельная работа студента: 5 часов

Содержание:

Понятие вектора. Правила действий над векторами. Угол между двумя векторами.

Самостоятельная работа студента:

Определение вектора. Равенство векторов. Линейные операции над векторами и

их свойства. Линейная зависимость векторов. Базис. Разложение по базису.

Декартова система координат на плоскости и в пространстве.

Деление отрезка в данном отношении.

Скалярное произведение, его свойства. Длина вектора. Угол между двумя

векторами. Условия коллинеарности и перпендикулярности двух векторов.

Ориентация тройки векторов. Векторное произведение, его свойства.

Векторное произведение в декартовой системе координат.

Смешанное произведение, его свойства. Вычисление смешанного произведения в

декартовой системе координат. Геометрический смысл определителя третьего

порядка. Компланарность трех векторов.

Выполнение действий над векторами

Вопросы для самоконтроля:

Определение вектора. Равенство векторов. Линейные операции над векторами и

их свойства. Линейная зависимость векторов. Базис.

Декартова система координат на плоскости и в пространстве.

Скалярное произведение, его свойства. Длина вектора. Угол между двумя

векторами. Условия коллинеарности и перпендикулярности двух векторов.

Компланарность трех векторов.

Выполнение действий над векторами

Что называется направленным отрезком и его длиной?

Какой вектор равен сумме двух взаимно противоположных векторов с равными модулями?

Чему равно скалярное произведение двух взаимно перпендикулярных векторов? параллельных векторов?

Чему равно скалярное произведение ортов координатных осей?

Изучив данную тему, студент должен знать:

Определение вектора. Равенство векторов. Линейные операции над векторами иих свойства. Линейную зависимость векторов. Базис. Разложение по базису. Скалярное произведение, его свойства. Условия коллинеарности и перпендикулярности двух векторов. Векторное произведение, его свойства. Векторное произведение в декартовой системе координат. Смешанное произведение, его свойства. Компланарность трех векторов.

Изучив данную тему, студент должен уметь:

Выполнять действия над векторами. Выполнить разложение вектора по базису.Делить отрезок в заданном отношении.Находить угол между двумя векторами.

Вычислять смешанное произведение в декартовой системе координат.

Выполнение действий над векторами

Тема 2.2. Прямые и плоскости, их взаимное расположение.







Дата добавления: 2015-12-04; просмотров: 205. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия