Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Применение в моделировании и прогнозах


Для проведения образовательного процесса по дисциплине «Уголовный процесс» необходимо следующее материально-техническое обеспечение:

· учебная аудитория на достаточное для учебной группы количество мест;

· доска учебная (с возможностью написания мелом или фломастером);

· ноутбук и проектор для применения интерактивны форм и информационных технологий;

· мобильная мебель для организации групповой работы (желательно);

· подключение к сети интернет;

· криминалистический кабинет для связывания уголовного процесса с практикой расследования и раскрытия преступлений;

· учебный зал судебных заседаний для проведения интерактивных тренингов.

 


[1] Почти то же, что и библиографическое описание документа (в списке литературы). Отличие в том, что 1) в ссылке можно опускать некоторые элементы, если, используя остальные можно найти нужный документ; 2) в библиографической ссылке указываются все сведения и приводится указание на конкретную страницу, статью, пункт документа.

Зачем нужна математика

Многие часто задаются вопросом зачем нужна математика?. Нередко сам факт того, что эта дисциплина входит в обязательную программу университетов и школ, ставит людей в недоумение. Это недоумение выражается в следующем: Мол, для чего мне, человеку чья будущая (или нынешняя) профессия не будет связана с ведением расчетов и применением математических методов, знать математику?

Зачем нужна математика

Чем мне это может пригодиться в жизни? Таким образом большое количество людей не видят никакого смысла для себя в освоении этой науки, даже на элементарных началах. Но я уверен, что математика, точнее навыки математического мышления, нужны всем и каждому. В этой статье я объясню, почему я в этом так уверен. Сначала я расскажу зачем эта дисциплина, как научное знание и метод, нужна вообще и где находится ее место в системе всех естественных наук и как она применяется на практике.

Если вы это итак знаете, но все равно задаетесь вопросом зля чего изучение этой дисциплины нужно лично вам, тогда переходите сразу ко второй части статьи. Там я буду говорить о том, какие личностные качества помогает развить математика, и чего вы лишитесь, если откажетесь от освоения этого предмета, хотя бы на базовом уровне.

 

Место математики в системе наук

 

Математика — это фундаментальная наука, методы которой, активно применяются во многих естественных дисциплинах, таких как физика, химия и даже биология. Сама по себе, эта область знаний оперирует абстрактными отношениями и взаимосвязями, то есть такими сущностями, которые сами по себе не являются чем-то вещественным.

 

Но тем не менее, стоит только математике вступить в область любой науки о мире, она сразу воплощается в описание, моделирование и предсказание вполне себе конкретных и реальных природных процессов. Здесь она обретает плоть и кровь, выходя из под покрова идеализированных и оторванных от жизни формул и подсчетов.

 

Математика — инструмент познания мира

Она представляет из себя науку точную, не терпящую произвола в толковании и различных спекуляций. Это воплощение порядка и жесткой логики. Она помогает понять мир вокруг нас, узнать больше о его законах, так как эти законы подчинены тому же самому порядку, что царит в математике!

Язык, на котором говорит природа, мы успешно можем перевести на язык математики и осознать структуру взаимосвязей какого-либо явления. И, после того, как мы эти связи формализуем, мы можем строить модели, предсказывать будущие состояния явлений, которые этими моделями описываются, только лишь на бумаге или внутри памяти вычислительных машин!

Эйнштейн, в ответ на вопрос, где находится его лаборатория, улыбнулся и указал на карандаш и бумажный лист.

Его формулы теории относительности стали важным этапом на пути познания вселенной в которой мы живем. И это произошло до того, как человек начал осваивать космос и только тогда экспериментально подтвердил правильность уравнений великого ученого!

Применение в моделировании и прогнозах

Благодаря применению математики нам не нужно проводить дорогостоящие и опасные для жизни эксперименты, прежде чем реализовать какой-нибудь сложный проект, например, в освоении космоса. Мы можем заранее рассчитать параметры орбиты космического аппарата, запускаемого с земли для доставки космонавтов на орбитальную станцию. Математические расчеты позволят не рисковать жизнью людей, а прикинуть заранее все необходимые для запуска ракеты параметры, обеспечив безопасный полет.

 

Конечно модель она на то и модель, что не может учесть все возможные переменные, поэтому и случаются катастрофы, но все равно она обеспечивает довольно надежные прогнозы.

 

Воплощение математического расчета вы можете видеть везде: в машине, на которой ездите, в компьютере или переносном устройстве, с которого сейчас читаете эту статью. Все постройки, здания не разрушаются под собственным весом благодаря тому, что все данные необходимые для постройки рассчитывали заранее по формулам.

 

Медицина и здравоохранение — тоже существует благодаря математике, которая используется, во-первых при проектировании медицинских приборов, а во-вторых, при анализе данных об эффективности того или иного лечения.

 

Даже прогноз погоды не обходится без применение математических моделей.

 

Короче, благодаря математике мы имеем все доступные нам сегодня технологии, не подвергаем нашу жизнь бессмысленной опасности, строим города, осваиваем космос и развиваем культуру! Без нее мир был бы совсем иным.




<== предыдущая лекция | следующая лекция ==>
Методические рекомендации для преподавателей | Темы курсовых работ. Математика пригодится в бизнесе

Дата добавления: 2015-12-04; просмотров: 219. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия