Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Системы счисления.





 

В современных компьютерных системах исходные данные обычно представляются в десятичной системе счисления. Однако десятичная система не может непосредственно использоваться, так как не существует надежных и быстродействующих технических устройств, которые могли бы фиксировать десять устойчивых состояний. Исходя из этого, в современных компьютерных системах применяются элементы, которые имеют два устойчивых состояния: включен – выключен, есть напряжение – нет напряжения, есть заряд – нет заряда и т.д. Очевидно, что эти два устойчивых состояния удобно описывать двоичной системой счисления, которая имеет всего две цифры (0 и 1) и которая является основной. В качестве вспомогательной системы счисления используется шестнадцатеричная система счисления.

Системой счисления называется совокупность символов (цифр) и правил для изображения чисел.

Используемые в современных компьютерных системах десятичная, двоичная и шестнадцатеричная системы счисления являются позиционными системами, в которых значения отдельных цифр в числе (их вес) определяется их положением (разрядом).

Любая позиционная система счисления характеризуется своим основным параметром – основанием (базисом) – Р.

Основанием (Р) любой позиционной системы счисления называется количество цифр, используемых для изображения чисел.

Так, в десятичной системе счисления основание (Р) равно десяти (Р=10), и, следовательно, в ней используется десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8. 9.

В двоичной системе счисления основание равно двум (Р=2), и, следовательно, в ней используется всего две цифры: 0,1.

В шестнадцатеричной системе счисления основание равно шестнадцати (Р=16), и, следовательно, в ней используется шестнадцать цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15. Для удобства цифры 10, 11, 12, 13, 14, 15 заменены латинскими буквами А, В, С, D, Е, F (А=10, В=11, С=12, D=13, Е=14, F=15).

Исходя из того, что количество используемых цифр в любой позиционной системе счисления определяется ее основанием (Р), соседние разряды в числе отличаются в Р раз. При этом применяется следующая нумерация разрядов дя целой и дробной частей любого числа:

- в целой части числа нумерация начинается с нулевого разряда и идет справа налево, т.е. 0, 1, 2, 3, 4 и т.д.;

- в дробной части числа нумерация начинается с -1 разряда и идет слева направо, т.е. –1, -2, -3, -4, и т.д. (см таблицу 1.3.1.).

 

Таблица 1.3.1.

Р а з р я д ы
        -1 -2 -3 -4
Р3 Р2 Р1 Р0 Р-1 Р-2 Р-3 Р-4

Пример 1. Десятичная система счисления (Р=10).

А(10) = 275,578(10) = 2*102 + 7*101 + 5*100 + 5*10-1 +3*10-2 +8*10-3

Пример 2. Двоичная система счисления (Р=2).

А(2) = 111,111(2) = 1*22 + 1*21 + 1*20 + 1*2-1 + 1*2-2 + 1*2-3

Пример 3. Шестнадцатеричная система счисления (Р=16).

А(16) = 28С,35Е(16) = 2*162 + 8*161 + 12*160 + 3*16-1 + 5*16-2 + 14*16-3

 

Если произвести указанные математические операции, то можно получить десятичное представление взятых чисел.

Рассмотренные простые примеры показывают не только формы записи любого числа в произвольно выбранной системе счисления, но и дают простой способ для перевода чисел, выраженных в двоичной и шестнадцатеричной системах счисления, в десятичную систему счисления.

Для перевода десятичных чисел в двоичную систему счисления удобно использовать таблицу соотношение степеней основания 2 (см. таблицу 1.3.2.):

Таблица 1.3.2.

Степени двойки                  
Десятичные числа                  

 

Пример 4. Перевести десятичное число 640 в двоичную систему счисления

640(10)=29+24+23+22=512+16+8+4

Следовательно: 640(10)=1000011100(2)

 

Рассмотрим теперь обратную задачу: перевод чисел, выраженных в десятичной системе счисления, в двоичную и шестнадцатеричную системы счисления. Для этого удобно использовать следующую таблицу соответствия.

Таблица 1.31

Системы счисления Системы счисления
Десятичная Двоичная Шестнадцатеричная Десятичная Двоичная Шестнадцатеричная
           
           
          А
          В
          С
          D
          Е
          F

 

Используя таблицу 1.3.1 можно легко переводить числа из двоичной системы счисления в шестнадцатеричную систему и обратно.

 

Пример 5. Перевести двоичное число 101.11(2) в шестнадцатеричную

систему счисления.

Запишем данное двоичное число следующим образом:

0101.1100

       
   


5 С

Следовательно 101.11(2) = 5.С(16)







Дата добавления: 2015-12-04; просмотров: 221. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия